scholarly journals Ultra-high-bandwidth polarization interferometry and optimal quadratic phase detection

2019 ◽  
Vol 90 (8) ◽  
pp. 083503
Author(s):  
T. E. Weber ◽  
R. J. Smith
2008 ◽  
Vol 381-382 ◽  
pp. 349-352
Author(s):  
Ju Yi Lee ◽  
T.K. Chou ◽  
H.C. Shih ◽  
Cheng Chih Hsu

A full field phase detection system for surface plasmon resonance (SPR) bio-sensor is presented. The phase difference variation between s and p polarization resulting from the SPR was detected by the polarization interferometry. In the polarization interferometry, the light reflected from the SPR sensor was divided into four phase quardrature parts by polarization components. By means of an algorithm similar to phase shifting interferometry, the phase distribution of SPR bio-sensor was obtained. We have successfully detected the phase difference variation with 0.07º resolution within 1×1 mm2 full field range. The corresponding detection limit of the refractive index change is about 1×10-7.


Author(s):  
Revati Kadu ◽  
U. A. Belorkar

One of the most common and augmenting health problems in the world are related to skin. The most  unpredictable and one of the most difficult entities to automatically detect and evaluate is the human skin disease because of complexities of texture, tone, presence of hair and other distinctive features. Many cases of skin diseases in the world have triggered a need to develop an effective automated screening method for detection and diagnosis of the area of disease. Therefore the objective of this work is to develop a new technique for automated detection and analysis of the skin disease images based on color and texture information for skin disease screening. In this paper, system is proposed which detects the skin diseases using Wavelet Techniques and Artificial Neural Network. This paper presents a wavelet-based texture analysis method for classification of five types of skin diseases. The method applies tree-structured wavelet transform on different color channels of red, green and blue dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. In all 99 unique features are extracted from the image. By using Artificial Neural Network, the system successfully detects different types of dermatological skin diseases. It consists of mainly three phases image processing, training phase, detection  and classification phase.


2021 ◽  
Author(s):  
Garrett C. Mathews ◽  
Matthew Blaisdell ◽  
Aaron I. Lemcherfi ◽  
Carson D. Slabaugh ◽  
Christopher S. Goldenstein

2014 ◽  
Vol 17 (3-4) ◽  
pp. 115-132
Author(s):  
Alexandre Battiston ◽  
El-Hadj Miliani ◽  
Jean-Philippe Martin ◽  
Babak Nahid-Mobarakeh ◽  
Serge Pierfederici ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2004 ◽  
Author(s):  
Robert Fielder ◽  
Matthew Palmer ◽  
Wing Ng ◽  
Matthew Davis ◽  
Aditya Ringshia

Sign in / Sign up

Export Citation Format

Share Document