Photocatalytic study of cobalt doped zinc oxide nanoparticles prepared by co-precipitation method

2019 ◽  
Author(s):  
Amita ◽  
Diksha ◽  
Pawan S. Rana
2021 ◽  
Vol 330 ◽  
pp. 115602
Author(s):  
Seyyed Vahid Mousazad Goorabjavari ◽  
Fateme Golmohamadi ◽  
Saba Haririmonfared ◽  
Hosein Ahmadi ◽  
Soheil Golisani ◽  
...  

2019 ◽  
Vol 18 (3) ◽  
pp. 1179-1187 ◽  
Author(s):  
S. López-Cuenca ◽  
◽  
J. Aguilar-Martínez ◽  
M. Rabelero-Velasco ◽  
F.J. Hernández-Ibarra ◽  
...  

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parisa Shafiee ◽  
Mehdi Reisi Nafchi ◽  
Sara Eskandarinezhad ◽  
Shirin Mahmoudi ◽  
Elahe Ahmadi

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.


2016 ◽  
Vol 107 (2) ◽  
pp. 299 ◽  
Author(s):  
Zahra KHOOSHE-BAST ◽  
Najmeh Sahebzadeh ◽  
Mansour GHAFFARI-MOGHADDAM ◽  
Ali MIRSHEKAR

<p><em></em>Greenhouse whitefly,<em> Trialeurodes vaporariorum</em> is a major pest of horticultural and ornamental plants and is usually controlled with insecticides or biological control agents. In the current study, we examined the effects of synthesized zinc oxide nanoparticles (ZnO NPs) and <em>Beauveria bassiana</em> TS11 on <em>T. vaporariorum</em> adults. ZnO NPs were synthesized by precipitation method. Field emission scanning electron microscope images indicated that ZnO NPs were non-compacted uniformly. X-ray diffraction results confirmed the hexagonal wurtzite structure of ZnO NPs. Fourier transform infrared analysis showed an intense absorption peak at a range of 434-555 cm<sup>-1</sup> related to Zn-O bond. In bioassays, adults were exposed to different concentrations of ZnO NPs (3, 5, 10, 15, 20 mg l<sup>-1</sup>) and fungi (10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6</sup>, 10<sup>7</sup>, 10<sup>8</sup> spores ml<sup>-1</sup>). LC<sub>50</sub> values for ZnO NPs and fungi were 7.35 mg l<sup>-1</sup>and 3.28×10<sup>5</sup> spores ml<sup>-1</sup>, respectively. Mortality rates obtained with ZnO NPs and fungi at the highest concentration were 91.6 % and 88.8 %, respectively. The results indicate a positive effect of ZnO NPs and <em>B. bassiana </em>TS11on adults. The current study was conducted under laboratory conditions, therefore, more studies are needed in field.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sidra Sabir ◽  
Muhammad Arshad ◽  
Sunbal Khalil Chaudhari

Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bulcha Bekele ◽  
Anatol Degefa ◽  
Fikadu Tesgera ◽  
Leta Tesfaye Jule ◽  
R. Shanmugam ◽  
...  

Comparison of green and chemical precipitation method syntheses of zinc oxide nanoparticles (ZnO NPs) was performed, and antimicrobial properties were investigated. Avocado, mango, and papaya fruit extracts were carried out for the green synthesising methods, while the chemical precipitation method was chosen from chemical synthesis methods. Zinc nitrate was used as a salt precursor, whereas leaf extract was served as a reducing agent for green synthesising methods. In addition, sodium hydroxide, polyvinyl alcohol, and potassium hydroxide were used as reducing agents in the case of chemical precipitation synthesis methods. ZnO NPs were characterised by characterizing techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antimicrobial activities of prepared nanoparticles were evaluated on Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (S. typhimurium). The particle sizes of the prepared samples which were evaluated by the Scherrer equation were in the range of 11-21 nm for green synthesis, while 30-40 nm for chemical precipitation synthesis methods. Small agglomerations were observed from SEM results of prepared ZnO NPs from both methods. Prepared ZnO NPs were showed strong antimicrobial properties. From the result, the inhibition zone was in the range of 15-24 mm for the green route and 7–15 mm for chemical precipitation methods, where the standard drugs have 25 mm of the zone of inhibition. A green synthesised method of preparing ZnO NPs gives promising antimicrobial properties compared to chemical synthesis and is also eco-friendly and safe compared to the chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document