scholarly journals Wide-range line shape control of Fano-like resonances in all-dielectric multilayer structures based on enhanced light absorption in photochromic waveguide layers

2020 ◽  
Vol 127 (7) ◽  
pp. 073103 ◽  
Author(s):  
Kengo Motokura ◽  
Byungjun Kang ◽  
Minoru Fujii ◽  
Dmitry V. Nesterenko ◽  
Zouheir Sekkat ◽  
...  
Author(s):  
Adi Prasetio ◽  
Soyeon Kim ◽  
Muhammad Jahandar ◽  
Dong Chan Lim

AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.


2018 ◽  
Vol 20 (12) ◽  
pp. 125003 ◽  
Author(s):  
Byungjun Kang ◽  
Minoru Fujii ◽  
Dmitry V Nesterenko ◽  
Zouheir Sekkat ◽  
Shinji Hayashi

1998 ◽  
Vol 08 (05n06) ◽  
pp. 537-575 ◽  
Author(s):  
Jai Menon ◽  
Baining Guo

This paper presents a unified approach for incorporating free-form solids in bilateral Brep and CSG representation schemes, by resorting to low-degree (quadratic, cubic) algebraic surface patches. We develop a general CSG solution that represents a free-form solid as a boolean combination of a direct term and a complicated delta term. This solution gives rise to the trunctet-subshell conditions, under which the delta term computation can be obviated. We use polyhedral smoothing to construct a Brep consisting of quadratic algebraic patches that meet with tangent-plane continuity, such that the trunctet-subshell conditions are guaranteed automatically. This guarantee is not currently available for cubic patches. The general CSG solution thus applies whenever trunctet-subshell conditions are violated, e.g. sometimes for cubic patches or sometimes for patches of any degree that are subject to shape control operations. Manifold solids of arbitrary topology can be represented in our dual representation system. Ensuing CSG constructs are parallel processed on the RayCasting Engine to support a wide range of solid modeling applications, including general sweeping, Minkowski operations, NC machining, and touch-sense probing.


2019 ◽  
Vol >15 (5) ◽  
pp. 501-505 ◽  
Author(s):  
Mohammad Rezaul Karim ◽  
Muhammad Ali Shar ◽  
Syed Abdullah

Background: Energy crisis is a vital issue worldwide and it will be increased tremendously in future. Alternative energy sources have been sought for the betterment of the future world. Solar energy is an alternative energy resource with plenty of opportunities. To make user- friendly and cheaper solar cells, dye-sensitized solar cells are tried to develop in this aspect. Objective: Single dye is not good enough to capture a wide range of solar light. The blending of different dyes is an alternative approach to harvest a wider range of solar lights on solar cells. Here, N719 and IR dyes were utilized to get UV-VIS and NIR ranges of solar lights in dye-sensitized solar cells. Methods: Dye-sensitized solar cells (DSSCs) were fabricated by using mixed dyes with various combinations of N719 (dye A) and IR dyes (dye B). The mixed dyes solutions were adsorbed on titanium dioxide (TiO2) and revealed significant light absorption & photosensitization compared with the individual dye solutions. The DSSCs fabricated with more percentage of IR dyes exhibited the best sensitization and broader spectrum. Results: The light absorption spectrum of the blended dyes solutions was confined peaks resultant of both N719 and IR dyes. The maximum efficiencies of 7.91% and 7.77% were obtained with 70% and 80% of IR dyes, respectively. Conclusion: Both N719 and IR mixed dyes solar cells were fabricated successfully for the first time. The relevant reasons behind the working of N719 and IR mixed dyes solar cells have been discussed. It was also noted that only IR dyes sensitized cells did not function under the simulated sunlight.


JETP Letters ◽  
2015 ◽  
Vol 100 (11) ◽  
pp. 731-736 ◽  
Author(s):  
R. S. Savelev ◽  
I. V. Shadrivov ◽  
Yu. S. Kivshar

2004 ◽  
Author(s):  
Ye Feng ◽  
Xiaodong Zhang ◽  
Beverly Cheung ◽  
Zhuan Liu ◽  
Mita Isao ◽  
...  

2008 ◽  
Vol 112 (1135) ◽  
pp. 557-565 ◽  
Author(s):  
C. Tao ◽  
Y. Daren ◽  
B. Wen

AbstractDual-mode scramjet is one of the candidates for hypersonic flight propulsion system which will be used in wide range of flight Mach numbers from 4 to 12 or higher, wherein dual-mode scramjet should be well designed to be suitable for subsonic/supersonic combustion operation according to the flight conditions. Therefore this system is required to operate in a finite number of operational modes that necessitate robust, stable, and smooth transitions between them by which selective operability of supersonic/subsonic combustion modes and efficient combustor operation in these modes may be realised. A key issue in making mode transition efficient and stable is mode transition control. The major problem in mode transition control is the handling of the various flow and combustion coupling effects of dual-mode scramjet whose physical states are spatially coupled and whose governing equations are partial differential equations. Involving these distributed parameter issues, our basic idea is using the shape control theory to study the control problems of mode transition for dual-mode scramjet with the aim of achieving the desirable design properties and increasing control reliabilities. This specific approach is motivated by the promise of novel techniques in control theory developed in recent years. Concrete control arithmetic of this approach, such as shape control model, sensitivity analysis and gradient-based optimisation procedure, are given in this paper. Simulation results for an axisymmetric, wall-injection dual-mode scramjet show the feasibility and validity of the method.


Sign in / Sign up

Export Citation Format

Share Document