scholarly journals Photoacoustic systems for biomedical imaging application: A comparison study

2019 ◽  
Author(s):  
Hui Ling Chua ◽  
Audrey Huong ◽  
Kim Gaik Tay
2020 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Yaya Zhang ◽  
Chuting Wang ◽  
Bingxin Huai ◽  
Shiyu Wang ◽  
Yating Zhang ◽  
...  

In the past few decades, the applications of terahertz (THz) spectroscopy and imaging technology have seen significant developments in the fields of biology, medical diagnosis, food safety, and nondestructive testing. Label-free diagnosis of malignant tumours has been obtained and also achieved significant development in THz biomedical imaging. This review mainly presents the research status and prospects of several common continuous-wave (CW) THz medical imaging systems and applications of THz medical imaging in biological tissues. Here, we first introduce the properties of THz waves and how these properties play a role in biomedical imaging. Then, we analyse both the advantages and disadvantages of the CW THz imaging methods and the progress of these methods in THz biomedical imaging in recent ten years. Finally, we summarise the obstacles in the way of the application of THz bio-imaging application technology in clinical detection, which need to be investigated and overcome in the future.


Author(s):  
Rachmat Agus Kurdyanto ◽  
Nurhayati Nurhayati ◽  
Puput Wanarti Rusimamto ◽  
Farid Baskoro

AbstractMicrowave can be applied for telecommunicaions, radar and microwave imaging. This wave has been widely used in everyday life, such as in the industrial word in the fields of robotics, microwave vision, imaging burrier objects, vehicular guidance, biomedical imaging, remote sensing, wheater radar, target tracking, and other apllications. Microwave imaging is a technology that uses electromagnetic waves at frequencies from Megahertz to Gigahertz. Utilization of microwave imaging in addition to information technology and telecommunications, this wave application can be used to process an image because of its ability to penetrate dielectric materials. The purpose of writing this article is to determine microwave imaging application, the working principle of antennas used for microwave imaging applications and antenna specifications used for microwave imaging applications. Microwave imaging research has been carried out using several different type of antennas such as vivaldi and monopole antennas. Where the signal tha is transmitted and will be exposed to the object will send a different return signal so that an image of an object will be obtained which will be processed on the computer. The working frequency of the antenna for microwave imaging applications is in a wide frequency range (UWB antenna). The antennas that are applied include the vivaldi antenna which works at a frequency of 1-11 GHz and a monopole antenna that works at a frequency 1,25-2,4 GHz for biomedical imaging applications, while for radar applications in the construction field it can use a frequency of 0,5-40 GHz.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Rajinikanth Yella ◽  
Krishna Pande ◽  
Ke Horng Chen

Our goal is to develop THz module on chip to visualize bone grinding atthe early stage so that arthritis can be visualized and treated early. A criticalcomponent of such module is antenna. A compact 4 by 4 beamformingantenna array for biomedical application is presented in this paper. Weare proposing a novel antenna which is in the form of a circular ribbonshape with a gold patch. Gold material for the patch is used to enhance itsconductivity and to cut down backward radiation. Differential port pin usedto increase the bandwidth. Au-posts are finally used for output connection.The proposed antenna operates over the frequency band from 201 GHz tomore than 228 GHz. Directivity and gain of the proposed antenna are 13dB and 7 dB respectively. This makes it applicable for imaging systemsbecause of the frequency band for biomedical imaging. Index Terms—Beamforming antenna, antenna array, Advanced design system (ADS),Biomedical imaging.


10.6036/10214 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 505-511
Author(s):  
LOGANATHAN MOHANA KANNAN ◽  
DHANASKODI DEEPA

Nowadays, the medical image processing techniques are using Very Large Scale Integrated (VLSI) designs for improving the availability and applicability. The digital filters are important module of Digital Signal Processing (DSP) based systems. Existing Finite Impulse Response (FIR) design approach performed with Partial Full Adder (PFA) based Carry Lookahead Adder (CLA) and parallel prefix adder logic in Vedic multiplier. Objective of this approach is to improve the performance of VLSI circuit by obtaining the result of area, power and delay, also, effective incorporation between VLSI circuit and image processing approach makes improved application availability. The design of high speed digital FIR filter is designed with various adders and multipliers. The incorporation of VLSI design and image processing techniques are used on biomedical imaging applications. The Enhanced FIR filter design utilized the hybrid adder and adaptive Vedic multiplier approaches for increasing the performance of VLSI part and the image processing results are taken from Matrix Laboratory tool. This proposed FIR filter design helps to perform the biomedical imaging techniques. The simulation result obtains the performance of enhanced FIR with area, delay and power; for biomedical imaging, Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) is obtained. Comparing with existing and proposed method, the proposed FIR filter for biomedical imaging application obtains the better result. Thus the design model states with various application availability of VLSI image processing approaches and it obtains the better performance results of both VLSI and image processing applications. Overall, the proposed system is designed by Xilinx ISE 14.5 and the synthesized result is done with ModelSim. Here the biomedical image performance is done by using MATLAB with the adaptation of 2018a. Keywords- Enhanced FIR filter; Adaptive vedic multiplier; Hybrid adder; Biomedical imaging; power delay product;


Sign in / Sign up

Export Citation Format

Share Document