High sensitivity and fast response at the room temperature of SnO2:CuO/PSi nanostructures sandwich configuration NH3 gas sensor

2019 ◽  
Author(s):  
Alwan M. Alwan ◽  
Ali A. Yousif ◽  
Husam R. Abed
Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3113 ◽  
Author(s):  
Zitao Liu ◽  
Tuoyu Yang ◽  
Ying Dong ◽  
Xiaohao Wang

Sensitive detection of volatile organic compounds (VOCs) is significant for environmental monitoring and medical applications. In this work, multi-walled carbon nanotubes (MWCNTs) and polyethylene glycol (PEG) that have good adsorption for VOCs, were sprayed layer by layer on an interdigitated electrode (IDE) to build a sensitive VOCs gas sensor. The relative resistance change (△R/R) when the sensor was exposed to VOCs was measured. The sensor showed high sensitivity to acetone, ethanol, isopropanol and isoprene with fast response (110 ± 5 s) and recovery (152 ± 5 s) at room temperature, and the lower detection limit (LDL) of the sensor reached 9 ppm. With the micro-fabricated IDE structure, the sensor can be easily built into an electric nose for VOC recognition and measurement.


2005 ◽  
Vol 486-487 ◽  
pp. 485-488 ◽  
Author(s):  
Hong Quang Nguyen ◽  
Mai Van Trinh ◽  
Jeung Soo Huh

The effect of operating temperature on characteristics of single-walled carbon nanotubes (SWNT) based gas sensor was investigated. SWNT-based sensor was fabricated from SWNT powder (Iljin Nanotech, Korea) by screen-printing method. SWNT powder (30 mg, AP grade) was dispersed into 0.78 gram a-terpineol (Aldrich) by ultrasonic vibration for 1 hour then stirred manually for 1 hour to increase adhesion. From this condensed solution, a thick film of SWNT was printed onto alumina substrates. The film then was sintered at 300oC for 2 hours to remove residual impurities. Upon exposure to some gases such as nitrogen, ammonia or nitric oxide, resistance of the sensor dramatically changes due to gas adsorption. In our experiments, SWNT-based sensor was employed to detect NH3 gas in N2 ambience. After saturated of N2, the sensor exposes to NH3 with various concentrations (from 5 ppm to 100 ppm, diluted by N2 as carrier gas). This sensor exhibits a fast response, high sensitivity but slow recovery at room temperature. By heating at high temperature and increasing the flow-rate of carrier gas, NH3 gas desorbs easily and recovery of the sensor improved. The heating also influenced the characteristics of sensors such as response and reproducibility. Other special changes in electric property of SWNT-based sensor caused by heating are also discussed.


2021 ◽  
pp. 2101511
Author(s):  
Ziwei Chen ◽  
Haojie Guo ◽  
Fusheng Zhang ◽  
Xiaowen Li ◽  
Jiabing Yu ◽  
...  

ACS Sensors ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 3387-3397
Author(s):  
Haoxuan He ◽  
Chenxi Zhao ◽  
Jing Xu ◽  
Kuanzhi Qu ◽  
Zhen Jiang ◽  
...  

2011 ◽  
Vol 128-129 ◽  
pp. 607-610
Author(s):  
Min Wang ◽  
Jie Chen ◽  
Niu Liu ◽  
Ya Wang

Mid-infrared lasers are very suitable for high-sensitive trace-gases detection for their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade (QC) lasers have been demonstrated to be ideal light sources with its special power, tuning and capability of operating in room-temperature. All these merits make it appropriate for the high resolution spectrum analysis. The absorption spectrum monitoring technology based on the QC laser pulsed operating in the room temperature, combining with the strong absorption of the gas molecule in the basic frequency, has become an effective way to monitor the trace gas with the characteristic of high sensitivity, good selectivity and fast response. In this paper, the inter-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser was introduced. Our approach to trace gas monitoring with QC lasers relies on short current pulses which are designed to produce even shorter light pulses. Each pulse corresponds to a single point in a spectrum. The N2O absorption spectrum centered at 2178.2cm-1was also obtained.


2019 ◽  
Vol 465 ◽  
pp. 56-66 ◽  
Author(s):  
Aviru Kumar Basu ◽  
Pankaj Singh Chauhan ◽  
Mohit Awasthi ◽  
Shantanu Bhattacharya

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5215 ◽  
Author(s):  
Hanan Abdali ◽  
Bentolhoda Heli ◽  
Abdellah Ajji

A nanocomposite of cross-linked bacterial cellulose–amino graphene/polyaniline (CLBC-AmG/PANI) was synthesized by covalent interaction of amino-functionalized graphene (AmG) AmG and bacterial cellulose (BC) via one step esterification, and then the aniline monomer was grown on the surface of CLBC-AmG through in situ chemical polymerization. The morphological structure and properties of the samples were characterized by using scanning electron microscopy (SEM), and thermal gravimetric analyzer (TGA). The CLBC-AmG/PANI showed good electrical-resistance response toward carbon dioxide (CO2) at room temperature, compared to the BC/PANI nanopaper composites. The CLBC-AmG/PANI sensor possesses high sensitivity and fast response characteristics over CO2 concentrations ranging from 50 to 2000 ppm. This process presents an extremely suitable candidate for developing novel nanomaterials sensors owing to easy fabrication and efficient sensing performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sweejiang Yoo ◽  
Xin Li ◽  
Yuan Wu ◽  
Weihua Liu ◽  
Xiaoli Wang ◽  
...  

Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties ofrGOTA functionalized. Our results showrGOTA functionalizedonly selective to ammonia with excellent respond, recovery, respond time, and recovery times.rGOTA functionalizedelectrical resistance decreases upon exposure to NH3where we postulated that it is due to n-doping by TA and charge transfer betweenrGOTA functionalizedand NH3through hydrogen bonding. Furthermore,rGOTA functionalizedhinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.


2019 ◽  
Vol 43 (26) ◽  
pp. 10501-10508 ◽  
Author(s):  
Jie Wu ◽  
Ying Yang ◽  
Hui Yu ◽  
Xiangting Dong ◽  
Tingting Wang

NiCo2O4/r-GO nanocomposites were synthesized successfully; the sensor based on these nanocomposites exhibited a fast response and high selectivity towards H2S at room temperature.


Sign in / Sign up

Export Citation Format

Share Document