Response characteristics of strain sensors based on closely spaced nanocluster films with controlled coverage

2019 ◽  
Vol 32 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Fei Liu ◽  
Wei Shao ◽  
Gan Xu ◽  
Ling Yuan
2021 ◽  
Vol 21 (5) ◽  
pp. 2969-2979
Author(s):  
Hyun Jin Nam ◽  
Jin Yeong Park ◽  
Van-Phu Vu ◽  
Sung-Hoon Choa

In stretchable strain sensors, highly elastic elastomers such as polydimethylsiloxane (PDMS), Ecoflex, and polyurethane are commonly used for binder materials of the nanocomposite and substrates. However, the viscoelastic nature of the elastomers and the interfacial action between nanofillers and binders influence the critical sensor performances, such as repeatability, response, and hysteresis behavior. In this study, we developed a stretchable nanocomposite strain sensor composed of multiwalled carbon nanotubes and a silicone elastomer binder. The effects of binder and substrate materials on the repeatability, response, hysteresis behavior, and long-term endurance of the strain sensors were systematically investigated using stretching, bending, and repeated cyclic bending tests. Three different binder and substrate materials including PDMS, Ecoflex, and a mixture of PDMS/Ecoflex were tested. The stretchable strain sensors showed an excellent linearity and stretchability of more than 130%. Therefore, the long-term endurance of the strain sensors fabricated with Ecoflex binder should be improved. The strain sensors fabricated with Ecoflex binder showed a relatively large variation in electrical resistance during 10,000-cycle bending tests and repeatability errors at large bending angles. The strain sensors fabricated with PDMS binder showed repeatability errors at small bending angles and a slight response delay of 1 second. On the contrary, the strain sensors fabricated with a mixture of PDMS/Ecoflex binder showed excellent repeatability and response characteristics. The PDMS material showed hysteresis behavior; therefore, the strain sensors fabricated with PDMS binder on PDMS substrate exhibited a large hysteresis behavior in the first stretch–release cycle. It was found that the hysteresis behavior of the strain sensors was mainly dependent on substrate materials than on binder materials. The stretchable strain sensors made of the mixture of PDMS/Ecoflex exhibited excellent repeatability, response, hysteresis behavior, and excellent capability in detecting finger and wrist bending.


2000 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Joni Kettunen ◽  
Niklas Ravaja ◽  
Liisa Keltikangas-Järvinen

Abstract We examined the use of smoothing to enhance the detection of response coupling from the activity of different response systems. Three different types of moving average smoothers were applied to both simulated interbeat interval (IBI) and electrodermal activity (EDA) time series and to empirical IBI, EDA, and facial electromyography time series. The results indicated that progressive smoothing increased the efficiency of the detection of response coupling but did not increase the probability of Type I error. The power of the smoothing methods depended on the response characteristics. The benefits and use of the smoothing methods to extract information from psychophysiological time series are discussed.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 237-240
Author(s):  
P. Hammer ◽  
D. Litvack ◽  
J. P. Saul

Abstract:A computer model of cardiovascular control has been developed based on the response characteristics of cardiovascular control components derived from experiments in animals and humans. Results from the model were compared to those obtained experimentally in humans, and the similarities and differences were used to identify both the strengths and inadequacies of the concepts used to form the model. Findings were confirmatory of some concepts but contrary to some which are firmly held in the literature, indicating that understanding the complexity of cardiovascular control probably requires a combination of experiments and computer models which integrate multiple systems and allow for determination of sufficiency and necessity.


2018 ◽  
Vol 46 (2) ◽  
pp. 78-92 ◽  
Author(s):  
A. I. Kubba ◽  
G. J. Hall ◽  
S. Varghese ◽  
O. A. Olatunbosun ◽  
C. J. Anthony

ABSTRACT This study presents an investigation of the inner tire surface strain measurement by using piezoelectric polymer transducers adhered on the inner liner of the tire, acting as strain sensors in both conventional and dual-chamber tires. The piezoelectric elements generate electrical charges when strain is applied. The inner liner tire strain can be found from the generated charge. A wireless data logger was employed to measure and transmit the measured signals from the piezoelectric elements to a PC to store and display the readout signals in real time. The strain data can be used as a monitoring system to recognize tire-loading conditions (e.g., traction, braking, and cornering) in smart tire technology. Finite element simulations, using ABAQUS, were employed to estimate tire deformation patterns in both conventional and dual-chamber tires for pure rolling and steady-state cornering conditions for different inflation pressures to simulate on-road and off-road riding tire performances and to compare with the experimental results obtained from both the piezoelectric transducers and tire test rig.


1998 ◽  
Vol 1998 (183) ◽  
pp. 211-218 ◽  
Author(s):  
Yoshio Iwahashi ◽  
Shigeo Ohmatsu ◽  
Takashi Tsubogo

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document