Factorial design of the effect of reaction temperature and reaction time on biodiesel production

Author(s):  
Agus Sartomo ◽  
Dandun Mahesa Prabowoputra ◽  
Suyitno
2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2020 ◽  
Vol 834 ◽  
pp. 16-23
Author(s):  
Pongchanun Luangpaiboon ◽  
Pasura Aungkulanon

Biodiesel was synthesized from direct transesterification of palm oil reacted with methanol in the presence of a suitable catalyst. There is a sequence of three consecutive reversible reactions for the transesterification process. These process parameters were optimized via the hybrid optimization approach of a conventional response surface method and artificial intelligence mechanisms from Sine Cosine and Thermal Exchange Optimization metaheuristics. The influential parameters and their combined interaction effects on the transesterification efficiency were established through a factorial designed experiments. In this study, the influential parameters being optimized to obtain the maximum yield of biodiesel were reaction temperature of 60–150°C, reaction time of 1–6 hours, methanol to oil molar ratio of 6:1–12:1 mol/mol and weight of catalyst of 1–10wt. %. On the first phase, the analysis of variance (ANOVA) revealed the reaction time as the most influential parameter on biodiesel production. Based on the experimental results from the hybrid algorithm via the SCO, it was concluded that the optimal biodiesel yield for the transesterification of palm oil were found to be 100°C for reaction temperature, 4 hours for reaction time, 10:1 wt/wt of ratio methanol to oil and 8% of weight of catalyst with 92.15% and 90.97% of biodiesel yield for expected and experimental values, respectively.


2013 ◽  
Vol 389 ◽  
pp. 12-16
Author(s):  
Yong Feng Kang ◽  
Hua Jin Shi ◽  
Lin Ge Yang ◽  
Jun Xia Kang ◽  
Zi Qi Zhao

Biodiesel is prepared from waste cooking oil and methanol. The ester exchange reaction is conducted under ultrasonic conditions with alkali as the catalysts. Five factors influencing on the transesterification reaction of biodiesel production are discussed in this study, including the reaction time, reaction temperature, catalyst amount, methanol to oil molar ratio, ultrasonic power. A series of laboratory experiments were carried out to test the conversion of biodiesel under various conditions. The process of biodiesel production was optimized by application of orthogonal test obtain the optimum conditions for biodiesel synthesis. The results showed that the optimum reaction conditions were:molar ratio of oil to methanol 8:1,catalysts 1.2g KOH/100g oil,reaction temperature 70°C, reaction time 50 min,Ultrasonic power 400W. The conversion may up to 96.48%.


2011 ◽  
Vol 189-193 ◽  
pp. 3925-3931 ◽  
Author(s):  
Qing Li Yang ◽  
Feng Zhu ◽  
Jie Sun ◽  
Song Qin

Suaeda salsa oil was taken as raw materials to produce biodiesel by ultrasonic-Assisted transesterification. Single factor experiment and the orthogonal experiment combination design were adopted to study the effects of ultrasonic frequency, ultrasonic power,reaction temperature ,reaction time,catalyst dosage and mole ratio of methanol to oil on biodiesel production rate. The order of factors that influence the biodiesel production rate within the experimental range was as follows: catalyst dosage>reaction time>reaction temperature>mole ratio of methanol to oil. The optimal technological parameters should be as follows: ultrasonic frequency 28kHz, ultrasonic power 210W, reaction temperature 65 , reaction time 10min,catalyst dosage 0.3%and mole ratio of methanol to oil 6, and biodiesel production rate is 97.93% under such conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 5555-5558

Biodiesel is renewable and environmental friendly fuel which has the potential to obtain considerable performance of engine. The aim of this work is to optimize the transesterification process for production of biodiesel using Taguchi method. In this experimental work, the Karanja oil transesterification is done to produce biodiesel using Al2O3 as a heterogeneous catalyst, using five parameters and five levels. Orthogonal array obtained by Minitab to analyze the interaction effect by using Taguchi method for the transesterification reaction. The parameters such as molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction time and stirring speed are effect on biodiesel yield. Effect of these parameters is investigated on small scale. Experimental yield obtained at optimal conditions i.e. are 20:1 molar ratio of methanol to oil, addition of 3% Al2O3 catalyst, reaction temperature 65ºC, reaction time 60 min and 600 rpm stirring speed is 80%.


2021 ◽  
Author(s):  
Vaishali Mittal ◽  
Uttam Kumar Ghosh

Abstract Production of biodiesel from microalgae is gaining popularity since it does not compromise food security or the global economy. This article reports biodiesel production with Spirulina microalgae through nanocatalytic transesterification process. The nanocatalyst calcium methoxide Ca(OCH3)2 was synthesized using wet impregnation method and utilized to carry out the transesterification process. The nanocatalyst was characterized to evaluate its structural and spectral characteristics using different characterization techniques such as Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunaeur-Emmett-Teller(BET) measurement for surface area. The result demonstrates that calcium methoxide Ca(OCH3)2 possesses a high catalytic activity compared to a heterogeneous catalyst such as calcium oxide (CaO). The impact of several process parameters such as reaction temperature, the molar ratio of methanol to oil, catalyst concentration, and reaction time used in the transesterification process was optimized by employing central composite design(CCD) based response surface methodology(RSM). The polynomial regression equation of second order was obtained for methyl esters. The model projected a 99% fatty acid methyl esters (FAME) yield for optimal process parameters of reaction time 3hrs,3 wt.% of Ca(OCH3)2 catalyst loading, 80°C reaction temperature, and 30:1 methanol to oil molar ratio.


2019 ◽  
Vol 13 (4) ◽  
pp. 464-474 ◽  
Author(s):  
Youzhou Jiao ◽  
Yahe Mei ◽  
Le Wang ◽  
Jiaao Liu ◽  
Zhiping Zhang ◽  
...  

The innocuous utilization of diseased swine carcasses is a key issue in reducing environmental pollution and ensuring safety in animal husbandry. In this study, by using fat from diseased swine carcasses as raw materials, response surface experiments were conducted to investigate the influences of reaction time, catalyst concentration, reaction temperature, and methanol/oil molar ratio on the biodiesel purity and the optimum conditions for biodiesel production were determined. Furthermore, three-dimensional (3D) ultrasound assistance was adopted and kinetic analysis was performed. The results show that the influencing factors on biodiesel purity, in descending order, were determined to be reaction temperature > catalyst concentration > reaction time > methanol/oil molar ratio. Moreover, the maximum biodiesel purity was 93.7% under the following optimal conditions: catalyst concentration of 5.0 wt%; reaction temperature of 68 °C; methanol/oil molar ratio of 10:1; reaction time of 37 h. When 3D ultrasound assistance was adopted, the maximum biodiesel purity of 98.1% was obtained for the reaction process of 8 h under the ultrasound power and frequency of 500 W and 20 kHz, respectively. And the esterification reaction time was significantly reduced, compared to without ultrasound assistance. The results of kinetic analysis demonstrate that the reaction rate constants of the ultrasound group were 4.45–5.52 times greater than that of the control group. And the activation energy for the ultrasound group was 25.58 kJ/mol, which is 22.81% lower than that of the control group. This study will help to conduct large-batch biodiesel production from diseased swine carcasses in the future.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 303
Author(s):  
B. S V S R Krishna ◽  
Shivaraj B K

Majority of biodiesel is produced from plant oil (Jatropha, Pongamia, Mahua, Neem, Cotton seed oil etc.), which requires large land area to grow. The major drawback of production of biodiesel in large scale is the cost of raw materials. One of the satisfactory methods to limit the Biodiesel (Methyl esters) production cost is to employ low price/quality raw material, for instance biodiesel production using waste cooking oil (WCO). Simultaneously solves the disposal problem of waste cooking oil. This is socioeconomic and environment friendly and it does not compete with fresh food oil resources. Waste cooking oil collected from different hotels in and around Manipal/Udupi of Karnataka, India. Transesterification reaction of WCO with methanol in presence of alkaline catalyst KOH has been accomplished in transesterification reactor. Experiments have been carried out at different operating conditions viz. catalyst loading (over the range of 0.4 to 3 wt %), oil to methanol ratio (1:3, 1:5, 1:6, 1:8, 1:9, 1:10 and 1:12), reaction temperature (50, 60 and 70 ºC) and reaction time (40, 50, 60, 70, 80 and 90 minutes) to identify optimized conditions for preparation of biodiesel. At these conditions gave that maximum yield (~91.60 %) of biodiesel at catalyst loading of 0.85 wt %, oil to methanol ratio of 1:8, reaction temperature of 60 ºC and reaction time of 60 minutes. Biodiesel properties at different blends (B100, B30, B20, and B5) as prescribed by ASTM D6751-12 methods have been carried out. Its performance and emission test on diesel engine were also carried out.  


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Hazir Farouk ◽  
Mohammad Nazri Mohd Jaafar ◽  
A. E. Atabani

A two step-transesterification process was adopted to produce biodiesel from crude jatropha oil in lab scale and pilot plant. The crude jatropha oil used was sourced with high different level of free fatty acids. The first sample (FFA=4.5%) was subjected to pretreatment step under reaction condition of 0.225 v/v sulfuric acid (H2SO4), 6:1 w/w methanol (MeOH) to oil mole ratio, reaction temperature of 65°C, and 180 min of reaction time. Meanwhile, the second jatropha oil sample (FFA=8%) was subjected to pretreatment process in pilot plant under reaction condition of 0.225 v/v sulfuric acid (H2SO4), 4.5:1 w/w methanol (MeOH) to oil mole ratio, reaction temperature of 65°C, and 180 min of reaction time. Moreover, the esterifies oil from both jatropha oil samples was subjected to alkaline base step using base-catalyst process parameters of 1.2 w/w potassium hydroxide (KOH), 4.5:1 w/w methanol to oil mole ratio, reaction temperature of 60°C, and 120 min of reaction time. The final biodiesel yield obtained was 82% and 90% from the first and the second jatropha oil sample respectively. The basic physiochemical properties of the jatropha methyl ester produced from both jatropha oil samples were found to be within the ASTM D6751 specified limits.


Sign in / Sign up

Export Citation Format

Share Document