Stability analysis of turbocharger rotor system supported on fluid film bearings

2020 ◽  
Author(s):  
Ajit Singh ◽  
T. C. Gupta
1989 ◽  
Vol 111 (3) ◽  
pp. 351-353
Author(s):  
Wen Zhang

The paper is devoted to the estimation of the lower bound of the stability threshold speed (STS) of a flexible rotor system supported in fluid-film bearings. It is proved theoretically that the STS of any multi-degree-of-freedom flexible rotor system is always higher than the STS of the corresponding equivalent single disk rotor. The conclusion offers us a simple approach to estimate the STS of any actual rotor system and provides a theoretical foundation for the approach.


Author(s):  
Majid Aleyaasin

AbstractIn this paper suppression of the transient flexural vibrational disturbances in long rotors, with fluid film bearings, is investigated. The rotor is described by a series of distributed shafts connected by the lumped discs, and the system is mounted on lumped fluid film bearings. Upon determination of the dynamic stiffness matrix of the system, the best approximate transfer function matrix description of the rotor, is determined. Initially vibration suppression by simple diagonal Proportional + Integral (PI) controllers is studied and via direct search optimisation techniques the PI parameters which exhibit fast vibration suppression is found. The resulted high integration rate, and low proportional gain PI controller, theoretically provided fast suppression time. However, it is shown that due to the strong coupling effect in the rotor system, and high rate of integration, the closed loop relative stability is weak, and feasibility of controller is questionable. Therefore, an alternative simple first order controller without integration action, that is named “attenuation filter “is suggested that can produce stronger stability and produces significant (not full) vibration suppression. The closed loop multivariable control of the rotor system comprising two vibration sensors and two magnetic actuators using such attenuation filter, is then simulated. The response to step disturbances, has provided 95% suppression with significantly fast response. It is concluded that although the attenuation filter may not provide 100% suppression, but it more reliable since the integration of the error, that results weak stability is avoided.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Christopher Zeh ◽  
Ole Willers ◽  
Thomas Hagemann ◽  
Hubert Schwarze ◽  
Jörg Seume

Abstract While turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modeled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600 °C and the lubricant is supplied at a pressure of 300 kPa with 90 °C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.


2006 ◽  
Vol 129 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Koichi Matsuda ◽  
Shinya Kijimoto ◽  
Yoichi Kanemitsu

The whirl instability occurs at higher rotating speeds for a full circular fluid-film journal bearing, and many types of clearance configuration have been proposed to solve this instability problem. A clearance configuration of fluid-film journal bearings is optimized in a sense of enhancing the stability of the full circular bearing at high rotational speeds. A performance index is chosen as the sum of the squared whirl-frequency ratios over a wide range of eccentricity ratios, and a Fourier series is used to represent an arbitrary clearance configuration of fluid-film bearings. An optimization problem is then formulated to find the Fourier coefficients to minimize the index. The designed bearing has a clearance configuration similar to that of an offset two-lobe bearing for smaller length-to-diameter ratios. It is shown that the designed bearing cannot destabilize the Jeffcott rotor at any high rotating speed for a wide range of eccentricity ratio. The load capacity of the designed bearings is nearly in the same magnitude as that of the full circular bearing for smaller length-to-diameter ratios. The whirl-frequency ratios of the designed bearing are very sensitive to truncating higher terms of the Fourier series for some eccentricity ratio. The designed bearings successfully enhance the stability of a full circular bearing and are free from the whirl instability.


Sign in / Sign up

Export Citation Format

Share Document