Evaluation of the Rotor Temperature Distribution of an Automotive Turbocharger Under Hot Gas Conditions Including Indirect Experimental Validation

2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Christopher Zeh ◽  
Ole Willers ◽  
Thomas Hagemann ◽  
Hubert Schwarze ◽  
Jörg Seume

Abstract While turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modeled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600 °C and the lubricant is supplied at a pressure of 300 kPa with 90 °C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.

Author(s):  
Christopher Zeh ◽  
Ole Willers ◽  
Thomas Hagemann ◽  
Hubert Schwarze ◽  
Joerg R. Seume

Abstract While turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modelled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600°C and the lubricant is supplied at a pressure of 300 kPa with 90°C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.


2021 ◽  
Vol 39 (5) ◽  
pp. 1667-1672
Author(s):  
Shreyas Padmaraman ◽  
Nagarathnam Rajesh Mathivanan ◽  
Babu Rao Ponangi

In recent times, the rise in performance and power of internal combustion engines has resulted in an increased demand for more efficient cooling systems. Customized engineered coolants, additives, radiator materials, redesigned coolant pumps and radiators help to meet these increased demands. In case of FSAE racecar, designing a radiator is an important part for controlling the engine operating temperature and increasing the effectiveness of the cooling system. In this work, an attempt is made to develop a simple yet reasonably accurate analytical model to calculate the effectiveness of a radiator. The model is then applied to predict the operating temperature of the engine at varying load conditions. Experimental investigations were performed using a customized radiator test rig to replicate the field test conditions. The rate of heat dissipation through the radiator with respect to the inlet temperature is analyzed by changing the surface area of the radiator. The developed model is able to predict the engine operating temperature in close agreement with the experimentation conducted. A marginal increase in surface area of the radiator resulted in significant drop in engine operating temperature. Thereby reduction in engine operating temperature will boost the performance of FSAE race car.


Author(s):  
Dieter Bohn ◽  
Harald Funke ◽  
Tom Heuer ◽  
Jürg Bütikofer

In the development of modern gas turbines the increase in the turbine inlet temperature is restricted by the need for cooling the first stages of the turbine. In addition, the flow leaving the combustor is thermally inhomogeneous. Since the blade cooling has to be designed for the actual local hot gas temperatures, it is important to know how these temperature inhomogeneities develop and attenuate inside the multistage flow passage. In this investigation the development of a circumferential and a radial temperature inhomogeneity inside a 4-stage turbine is analyzed at three different swirl ratios. Since the experimental setup allows a circumferential temperature streak, a radial temperature streak has also been applied at different swirl ratios to the same geometrical configuration for a numerical investigation. The first stage has a significant impact on the attenuation and change in form of a circumferential temperature streak depending on the swirl. For the radial streak the hot streak segregation effect can be eliminated by increasing the swirl. Consequently, the temperature equalization process is weakened.


Author(s):  
José Ramón Serrano ◽  
Francisco José Arnau ◽  
Luis Miguel García-Cuevas ◽  
Alejandro Gómez-Vilanova ◽  
Stephane Guilain ◽  
...  

Abstract Turbocharged engines are the standard architecture for designing efficient spark ignition and compression ignition reciprocating internal combustion engines (ICE). Turbochargers characterization and modeling are basic tasks for the analysis and prediction of the whole engine system performance and this information is needed in quite early stages of the engine design. Turbocharger characteristics (efficiency, pressure ratio, mass flow rates...) traditionally rely in maps of pseudo non-dimensional variables called reduced variables. These maps must be used by reciprocating ICE designer and modeler not only for benchmarking of the turbocharger, but for a multiplicity of purposes, i.e: assessing engine back-pressure, boost pressure, load transient response, after-treatment inlet temperature, intercooler inlet temperature, low pressure EGR temperature, ... Maps of reduced variables are measured in gas-stands with steady flow but non-standardized fluids conditioning; neither temperatures nor flows. In concrete: turbine inlet gas temperature; lubrication-oil flow and temperature; water-cooling flow and turbo-machinery external heat transfer are non-standardized variables which have a big impact in assessing said multiplicity of purposes. Moreover, adiabatic efficiency, heat losses and friction losses are important data, hidden in the maps of reduced variables, which depend on the testing conditions as much as on the auxiliary fluids temperature and flow rate. In this work it is proposed a methodology to standardize turbochargers testing based in measuring the maps twice: in close to adiabatic and in diathermal conditions. Along the paper it is discussed with special detail the impact of the procedure followed to achieve said quasi-adiabatic conditions in both the energy balance of the turbocharger and the testing complexity. As a conclusion, the paper proposes a methodology which combines quasi-adiabatic tests (cold and hot gas flow) with diathermal tests (hot gas flow) in order to extract from a turbocharger gas-stand all information needed by engine designers interested in controlling or 1D-modelling the ICE. The methodology is completed with a guide for calibrating said control-oriented turbocharger models in order to separate aerodynamic efficiency (adiabatic) from heat transfer losses and from friction losses in the analysis of the turbocharger performance. The outsourced calibration of the turbocharger model allows avoiding uncertainties in the global ICE model calibration, what is very interesting for turbochargers benchmarking at early ICE-turbo matching stages or for global system analysis at early control design stages.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jianhua Fan ◽  
Simon Furbo

Theoretical and experimental investigations of the flow and temperature distribution in a 12.53m2 solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating and boiling problems in the collector panel. Single-phase liquid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics (CFD) calculations. Differently designed collectors are investigated with different collector fluid volume flow rates. The effect of friction and the influence of the buoyancy effects are considered in the investigations. Further, experimental investigations of the solar collector panel are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the back of the absorber tubes. The measured temperatures are compared to the temperatures determined by the CFD model and there is a good agreement between the measured and calculated temperatures. Calculations with the CFD model elucidate the flow and temperature distribution in the collector. The influences of collector fluid flow rate and inlet temperature on the flow and temperature distribution are shown. The flow distribution through the absorber tubes is uniform if a high flow rate of 10.0l∕min is used. By decreased collector fluid flow rate and by increased collector fluid inlet temperature, the flow distribution gets less uniform due to the influence of buoyancy force. If the collector fluid flow rate is small and the collector fluid inlet temperature is high enough, severe nonuniform flow distribution may happen with a small flow rate or even zero or reverse flow in the upper horizontal strips, resulting in overheating or boiling problems in the strips. The CFD calculations elucidate the flow and temperature distribution in the collector panels of different designs. Based on the investigations, recommendations are given in order to avoid overheating or boiling problems in the solar collector panel.


Author(s):  
Max Bialaschik ◽  
Volker Schöppner ◽  
Mirko Albrecht ◽  
Michael Gehde

AbstractThe joining of plastics is required because component geometries are severely restricted in conventional manufacturing processes such as injection molding or extrusion. In addition to established processes such as hot plate welding, infrared welding, or vibration welding, hot gas butt welding is becoming more and more important industrially due to its advantages. The main benefits are the contactless heating process, the suitability for glass fiber reinforced, and high-temperature plastics as well as complex component geometries. However, various degradation phenomena can occur during the heating process used for economic reasons, due to the presence of oxygen in the air and to the high gas temperatures. In addition, the current patent situation suggests that welding with an oxidizing gas is not permissible depending on the material. On the other hand, however, there is experience from extrusion welding, with which long-term resistant weld seams can be produced using air. Investigations have shown that the same weld seam properties can be achieved with polypropylene using either air or nitrogen as the process gas. Experimental investigations have now been carried out on the suitability of different gases with regard to the weld seam quality when welding polyamides, which are generally regarded as more prone to oxidation. The results show that weld strengths are higher when nitrogen is used as process gas. However, equal weld strengths can be achieved with air and nitrogen when the material contains heat stabilizers.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
Marvin Hardt ◽  
Thomas Bergs

AbstractAnalyzing the chip formation process by means of the finite element method (FEM) is an established procedure to understand the cutting process. For a realistic simulation, different input models are required, among which the material model is crucial. To determine the underlying material model parameters, inverse methods have found an increasing acceptance within the last decade. The calculated model parameters exhibit good validity within the domain of investigation, but suffer from their non-uniqueness. To overcome the drawback of the non-uniqueness, the literature suggests either to enlarge the domain of experimental investigations or to use more process observables as validation parameters. This paper presents a novel approach merging both suggestions: a fully automatized procedure in conjunction with the use of multiple process observables is utilized to investigate the non-uniqueness of material model parameters for the domain of cutting simulations. The underlying approach is two-fold: Firstly, the accuracy of the evaluated process observables from FE simulations is enhanced by establishing an automatized routine. Secondly, the number of process observables that are considered in the inverse approach is increased. For this purpose, the cutting force, cutting normal force, chip temperature, chip thickness, and chip radius are taken into account. It was shown that multiple parameter sets of the material model can result in almost identical simulation results in terms of the simulated process observables and the local material loads.


1909 ◽  
Vol 176 (1909) ◽  
pp. 251-276
Author(s):  
B HOPKINSON ◽  
J C INGLIS ◽  
R E B CROMPTON ◽  
W W BEAUMONT ◽  
E J DAVIS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document