Hydrodynamic model for investigating the impact of reclamation islands in Jakarta Bay to mangrove ecosystem in the area

2020 ◽  
Author(s):  
Adecar Nugroho ◽  
Ikha Magdalena
2019 ◽  
Vol 5 ◽  
pp. 104
Author(s):  
Suhendra Purnawan ◽  
Subari Yanto ◽  
Ernawati S.Kaseng

This study aims to describe the profile of vegetation diversity in the mangrove ecosystem in Tamuku Village, Bone-Bone-Bone District, North Luwu Regency. This research is a qualitative research using survey methods. The data collection technique uses the Quadrant Line Transect Survey technique. The data analysis technique uses the thinking flow which is divided into three stages, namely describing phenomena, classifying them, and seeing how the concepts that emerge are related to each other. The results of this study are the profile of mangrove vegetation in Tamuku Village, which is still found 16 varieties of true mangrove vegetation and 7 varieties of mangrove vegetation joined in the coastal area of Tamuku Village, Bone-Bone District, North Luwu Regency, South Sulawesi. The condition of mangrove vegetation in Tamuku Village is currently very worrying due to human activities that cause damage such as the project of normalization of flow, opening of new farms, disposal of garbage, water pollution due to chemicals, and exploitation of mangrove forests for living needs. The impact is ecosystem damage and reduced vegetation area as a place to grow and develop mangroves.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


2017 ◽  
Vol 21 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Jannis M. Hoch ◽  
Arjen V. Haag ◽  
Arthur van Dam ◽  
Hessel C. Winsemius ◽  
Ludovicus P. H. van Beek ◽  
...  

Abstract. Large-scale flood events often show spatial correlation in neighbouring basins, and thus can affect adjacent basins simultaneously, as well as result in superposition of different flood peaks. Such flood events therefore need to be addressed with large-scale modelling approaches to capture these processes. Many approaches currently in place are based on either a hydrologic or a hydrodynamic model. However, the resulting lack of interaction between hydrology and hydrodynamics, for instance, by implementing groundwater infiltration on inundated floodplains, can hamper modelled inundation and discharge results where such interactions are important. In this study, the global hydrologic model PCR-GLOBWB at 30 arcmin spatial resolution was one-directionally and spatially coupled with the hydrodynamic model Delft 3D Flexible Mesh (FM) for the Amazon River basin at a grid-by-grid basis and at a daily time step. The use of a flexible unstructured mesh allows for fine-scale representation of channels and floodplains, while preserving a coarser spatial resolution for less flood-prone areas, thus not unnecessarily increasing computational costs. In addition, we assessed the difference between a 1-D channel/2-D floodplain and a 2-D schematization in Delft 3D FM. Validating modelled discharge results shows that coupling PCR-GLOBWB to a hydrodynamic routing scheme generally increases model performance compared to using a hydrodynamic or hydrologic model only for all validation parameters applied. Closer examination shows that the 1-D/2-D schematization outperforms 2-D for r2 and root mean square error (RMSE) whilst having a lower Kling–Gupta efficiency (KGE). We also found that spatial coupling has the significant advantage of a better representation of inundation at smaller streams throughout the model domain. A validation of simulated inundation extent revealed that only those set-ups incorporating 1-D channels are capable of representing inundations for reaches below the spatial resolution of the 2-D mesh. Implementing 1-D channels is therefore particularly of advantage for large-scale inundation models, as they are often built upon remotely sensed surface elevation data which often enclose a strong vertical bias, hampering downstream connectivity. Since only a one-directional coupling approach was tested, and therefore important feedback processes are not incorporated, simulated discharge and inundation extent for both coupled set-ups is generally overpredicted. Hence, it will be the subsequent step to extend it to a two-directional coupling scheme to obtain a closed feedback loop between hydrologic and hydrodynamic processes. The current findings demonstrating the potential of one-directionally and spatially coupled models to obtain improved discharge estimates form an important step towards a large-scale inundation model with a full dynamic coupling between hydrology and hydrodynamics.


2021 ◽  
Author(s):  
sejal chandel ◽  
suvarna shah

<p>In recent study, Gujarat has become one of the India’s most urbanized state, causing severe flash flooding. The Sabarmati river is one of the major west-flowing rivers in India and biggest river of north Gujarat.Urbanization should meet the population’s need by enlargement of paved areas, which has unusually changed the catchment’s hydrological and hydraulic characteristic. Therefor, the frequency of flash flooding in Sabarmati river has been increased. The Sabarmati river basin experienced eight times devastating flooding coendition between 1972 to 2020.Among which July 2017 flooding event breakdown a 112 years old record of 1905. The Dharoi dam and Wasna barrage on Sabarmati river and surrounding district Kheda, Mehsana, Gandhinagar, Ahmedabad received a huge rainfall caused anomalous inflow to tributary which forced the dam authorities to release huge discharge in short duration which leads to flooding. The Sabarmati riverfront of Ahmedabad had been going under water for five days due incessant rainfall in the city that leads to swelling of the Sabarmati river in 2017. In order to determine extent of Inundation, Hydrodynamic Model HEC-RAS(5.0.6) with Arc GIS was used. Various scenarios were run with HEC-RAS to study the impact of flow simulation on flood inundation(with & without riverfront project). The simulated flood depths have been compared with actual depths obtained at gauging station, which were collected from Government authorities. Ultimately, the analysis was used to create maps for different return periods with RAS Mapper and ArcMap that visually show the reach of the floodplains, illustrating the affected areas. Results demonstrate the usefulness of  modelling system to predict the extent of flood inundation and thus support analyses of management strategies to deal with risk associated with infrastructure in an urban setting.</p>


2019 ◽  
Vol 33 (23) ◽  
pp. 1950273 ◽  
Author(s):  
Cong Zhai ◽  
Weitiao Wu

Connected vehicles are expected to become commercially available by the next decade, while traffic interruption is not uncommon in the real traffic environment. In this paper, we propose a feedback control method for lattice hydrodynamic model considering the traffic interruption probability effect. The stability criterion of the new model is explored through linear stability analysis of transfer function. When the stability conditions are not satisfied, a delay feedback controller is used to control the discharging flow to suppress traffic congestion. The impact of gain coefficient and delay time on the performance is discussed. We verify the effectiveness of the devised delay feedback controller by simulations. Results show that the traffic interruption probability effect has a considerable impact on the stability of traffic flow, while the controller is effective in suppressing traffic congestion.


2014 ◽  
Vol 2014 (1) ◽  
pp. 901-918
Author(s):  
James A. Stronach ◽  
Aurelien Hospital

ABSTRACT Oil behavior and fate have been simulated extensively by several spill models. These simulations can be greatly enhanced by the use of a coupled three-dimensional model of currents and water properties to determine oil transport and weathering, both on the water surface and in the water column. Several physical and chemical processes such as vertical dispersion in response to wave action, resurfacing when waves die down, sinking through loss of volatiles and dissolution are essential in assessing the impact of an oil spill on the environment. Dissolution is especially important, considering the known toxicity of several of the constituents of liquid hydrocarbons. For this study, a three-dimensional hydrodynamic model of coastal British Columbia was coupled to an oil trajectory and weathering model in order to simulate the complete fate and behaviour of surface, shoreline-retained, dissolved, sunken and dispersed oil. Utilization of a three-dimensional model is the key to adequately modelling the transport of a spill in an estuarine region such as in the Strait of Georgia, B.C., where the distribution of currents and water properties is strongly affected by estuarine processes: the Fraser River enters at the surface and oceanic waters from the Pacific enter as a deep inflow. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D, a semi-implicit model using a staggered Arakawa grid and variable number of layers in the vertical direction to resolve near-surface processes. Waves were simulated using the wave model SWAN. Winds were obtained from the local network of coastal light stations and wind buoys. Stochastic modelling was conducted first, using only surface currents, to determine probabilistic maps of the oil trajectory on water and statistical results were extracted, such as the amount of shoreline oiled and the amount of oil evaporated, both for the ensemble of simulations constituting the stochastic simulation, as well as for any particular individual simulation. Deterministic scenarios were then selected and the fate of the oil, such as the dissolved and sunken fractions, was tracked over a 14 day period on the three-dimensional grid. This method has been used for environmental impact assessment and spill response planning.


Author(s):  
M. A. NASSAR

One-dimensional (1D) numerical model was developed to simulate water stage in open channels in order to suggest solutions for practical problems in the Nile River and its branches. The continuity and momentum equations describe the unsteady flow were solved using the finite difference technique. The developed model is verified using two types of data. The first type, simulating steady flow, is a field data collected at Elbogdady reach. It is a reach located 712.80 km upstream of Roda's staff gauge on the Nile River. The second type, simulating unsteady flow, is a result of the 1D SOBEK model. It is simulating the flow field at El-Mahrousa canal. It is one of El-Kanobia canal branches at 11.47 km left side, which is fed from El-Mahmoudia canal. Simplifications were made to simulate the flow patterns around the hydraulic structures using the developed hydrodynamic model. Actually, the water levels in many branch canals under continuous flow after implementation of Irrigation Improvement Project (IIP) need to be checked. The model could be applied to estimate the water stage under different abstraction values where some reaches of the Nile River and its branch suffering. In addition, it can be used to assess the impact of water allocation. Good agreement was observed between the model results and the field observations.


Sign in / Sign up

Export Citation Format

Share Document