scholarly journals Eulerian–Lagrangian modeling of cough droplets irradiated by ultraviolet–C light in relation to SARS-CoV-2 transmission

2021 ◽  
Vol 33 (3) ◽  
pp. 031905
Author(s):  
V. D'Alessandro ◽  
M. Falone ◽  
L. Giammichele ◽  
R. Ricci
2021 ◽  
Vol 28 ◽  
pp. 100665
Author(s):  
Uma Prajapati ◽  
Ram Asrey ◽  
Eldho Varghese ◽  
A.K. Singh ◽  
Madan Pal Singh

2020 ◽  
Vol 41 (S1) ◽  
pp. s33-s33
Author(s):  
Michihiko Goto ◽  
Erin Balkenende ◽  
Gosia Clore ◽  
Rajeshwari Nair ◽  
Loretta Simbartl ◽  
...  

Background: Enhanced terminal room cleaning with ultraviolet C (UVC) disinfection has become more commonly used as a strategy to reduce the transmission of important nosocomial pathogens, including Clostridioides difficile, but the real-world effectiveness remains unclear. Objectives: We aimed to assess the association of UVC disinfection during terminal cleaning with the incidence of healthcare-associated C. difficile infection and positive test results for C. difficile within the nationwide Veterans Health Administration (VHA) System. Methods: Using a nationwide survey of VHA system acute-care hospitals, information on UV-C system utilization and date of implementation was obtained. Hospital-level incidence rates of clinically confirmed hospital-onset C. difficile infection (HO-CDI) and positive test results with recent healthcare exposures (both hospital-onset [HO-LabID] and community-onset healthcare-associated [CO-HA-LabID]) at acute-care units between January 2010 and December 2018 were obtained through routine surveillance with bed days of care (BDOC) as the denominator. We analyzed the association of UVC disinfection with incidence rates of HO-CDI, HO-Lab-ID, and CO-HA-LabID using a nonrandomized, stepped-wedge design, using negative binomial regression model with hospital-specific random intercept, the presence or absence of UVC disinfection use for each month, with baseline trend and seasonality as explanatory variables. Results: Among 143 VHA acute-care hospitals, 129 hospitals (90.2%) responded to the survey and were included in the analysis. UVC use was reported from 42 hospitals with various implementation start dates (range, June 2010 through June 2017). We identified 23,021 positive C. difficile test results (HO-Lab ID: 5,014) with 16,213 HO-CDI and 24,083,252 BDOC from the 129 hospitals during the study period. There were declining baseline trends nationwide (mean, −0.6% per month) for HO-CDI. The use of UV-C had no statistically significant association with incidence rates of HO-CDI (incidence rate ratio [IRR], 1.032; 95% CI, 0.963–1.106; P = .65) or incidence rates of healthcare-associated positive C. difficile test results (HO-Lab). Conclusions: In this large quasi-experimental analysis within the VHA System, the enhanced terminal room cleaning with UVC disinfection was not associated with the change in incidence rates of clinically confirmed hospital-onset CDI or positive test results with recent healthcare exposure. Further research is needed to understand reasons for lack of effectiveness, such as understanding barriers to utilization.Funding: NoneDisclosures: None


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 274
Author(s):  
Derek G. Spear ◽  
Anthony N. Palazotto ◽  
Ryan A. Kemnitz

A series of computational models and simulations were conducted for determining the dynamic responses of a solid metal projectile impacting a target under a prescribed high strain rate loading scenario in three-dimensional space. The focus of this study was placed on two different modeling techniques within finite element analysis available in the Abaqus software suite. The first analysis technique relied heavily on more traditional Lagrangian analysis methods utilizing a fixed mesh, while still taking advantage of the finite difference integration present under the explicit analysis approach. A symmetry reduced model using the Lagrangian coordinate system was also developed for comparison in physical and computational performance. The second analysis technique relied on a mixed model that still made use of some Lagrangian modeling, but included smoothed particle hydrodynamics techniques as well, which are mesh free. The inclusion of the smoothed particle hydrodynamics was intended to address some of the known issues in Lagrangian analysis under high displacement and deformation. A comparison of the models was first performed against experimental results as a validation of the models, then the models were compared against each other based on closeness to experimentation and computational performance.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Talita Nicolau ◽  
Núbio Gomes Filho ◽  
Andrea Zille

In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.


2020 ◽  
Vol 41 (S1) ◽  
pp. s292-s292
Author(s):  
William Rutala ◽  
Hajime Kanamori ◽  
Maria Gergen ◽  
Emily Sickbert-Bennett ◽  
David Jay Weber

Background:Candida auris is an emerging fungal pathogen that is often resistant to major classes of antifungal drugs. It is considered a serious global health threat because it has caused severe infections with frequent mortality in over a dozen countries. C. auris can survive on healthcare environmental surfaces for at least 7 days, and it causes outbreaks in healthcare facilities. C. auris has an environmental route of transmission. Thus, infection prevention strategies, such as surface disinfection and room decontamination technologies (eg, ultraviolet [UV-C] light), will be essential to controlling transmission. Unfortunately, data are limited regarding the activity of UV-C to inactivate this pathogen. In this study, a UV-C device was evaluated for its antimicrobial activity against C. auris and C. albicans. Methods: We tested the antifungal activity of a single UV-C device using the vegetative bacteria cycle, which delivers a reflected dose of 12,000 µW/cm2. This testing was performed using Formica sheets (7.6 × 7.6 cm; 3 × 3 inches). The carriers were inoculated with C. auris or C. albicans and placed horizontal on the surface or vertical (ie, perpendicular) to the vertical UV-C lamp and at a distance from 1. 2 m (~4 ft) to 2.4 m (~8 ft). Results: Direct UV-C, with or without FCS (log10 reduction 4.57 and 4.45, respectively), exhibited a higher log10 reduction than indirect UV-C for C. auris (log10 reduction 2.41 and 1.96, respectively), which was statistically significant (Fig. 1 and Table 1). For C. albicans, although direct UV-C had a higher log10 reduction (log10 reduction with and without FCS, 5.26 and 5.07, respectively) compared to indirect exposure (log10 reduction with and without FCS, 3.96 and 3.56, respectively), this difference was not statistically significant. The vertical UV had statistically higher log10 reductions than horizontal UV against C. auris and C. albicans with FCS and without FCS. For example, for C. auris with FCS the log10 reduction for vertical surfaces was 4.92 (95% CI 3.79, 6.04) and for horizontal surfaces the log10 reduction was 2.87 (95% CI, 2.36–3.38). Conclusions:C. auris can be inactivated on environmental surfaces by UV-C as long as factors that affect inactivation are optimized (eg, exposure time). These data and other published UV-C data should be used in developing cycle parameters that prevent contaminated surfaces from being a source of acquisition by staff or patients of this globally emerging pathogen.Funding: NoneDisclosures: None


2010 ◽  
Vol 54 (4) ◽  
pp. 488-491 ◽  
Author(s):  
Han Cheng Lee ◽  
Yan Kuin Su ◽  
Jia Ching Lin ◽  
Yi Cheng Cheng ◽  
Ta Ching Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document