scholarly journals On the role of hydrogen-bond exchanges in the spectral diffusion of water

2021 ◽  
Vol 154 (6) ◽  
pp. 064501
Author(s):  
Zeke A. Piskulich ◽  
Damien Laage ◽  
Ward H. Thompson
2019 ◽  
Vol 281 ◽  
pp. 423-430 ◽  
Author(s):  
Matteo Tiecco ◽  
Federico Cappellini ◽  
Francesco Nicoletti ◽  
Tiziana Del Giacco ◽  
Raimondo Germani ◽  
...  

1998 ◽  
Vol 279 (5) ◽  
pp. 1123-1136 ◽  
Author(s):  
Ben Luisi ◽  
Modesto Orozco ◽  
Jiri Sponer ◽  
Francisco J Luque ◽  
Zippora Shakked

Langmuir ◽  
2017 ◽  
Vol 33 (42) ◽  
pp. 11543-11553 ◽  
Author(s):  
Li Li ◽  
Deshuai Yang ◽  
Trevor R. Fisher ◽  
Qi Qiao ◽  
Zhen Yang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 127-134
Author(s):  
Nhung Ngo Thi Hong ◽  
Huong Dau Thi Thu ◽  
Trung Nguyen Tien

Nine stable structures of complexes formed by interaction of guanine with thymine were located on potential energy surface at B3LYP/6-311++G(2d,2p). The complexes are quite stable with interaction energy from -5,8 to -17,7 kcal.mol-1. Strength of complexes are contributed by hydrogen bonds, in which a pivotal role of N−H×××O/N overcoming C−H×××O/N hydrogen bond, up to to 3.5 times, determines stabilization of complexes investigated. It is found that polarity of N/C−H covalent bond over proton affinity of N/O site governs stability of hydrogen bond in the complexes. The obtained results show that the N/C−H×××O/N red-shifting hydrogen bonds occur in all complexes, and a larger magnitude of an elongation of N−H compared C-H bond length accompanied by a decrease of its stretching frequency is detected in the N/C−H×××O/N hydrogen bond upon complexation. The SAPT2+ analysis indicates the substantial contribution of attractive electrostatic energy versus the induction and dispersion terms in stabilizing the complexes.


Author(s):  
Célia Fonseca Guerra ◽  
F. Matthias Bickelhaupt ◽  
Jaap G. Snijders ◽  
Evert Jan Baerends

2018 ◽  
Vol 42 (10) ◽  
pp. 7691-7702 ◽  
Author(s):  
Aurélien Moncomble ◽  
Diksha Jani Thaviligadu ◽  
Anaëlle Raoumbé Djendja ◽  
Jean-Paul Cornard

The acid-base properties of morin and its complexation with the ZnII cation are investigated by experimental and theoretical approaches.


Sign in / Sign up

Export Citation Format

Share Document