scholarly journals Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale

APL Materials ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 070701
Author(s):  
Roman Anufriev ◽  
Jeremie Maire ◽  
Masahiro Nomura
Author(s):  
Chittaranjan Nayak ◽  
Mehdi Solaimani ◽  
Alireza Aghajamali ◽  
Arafa H. Aly

In this study, we have scrutinized the frequency gap generation by changing the geometrical parameters of a one-dimensional phononic crystal. For this purpose, we have calculated the transmission coefficient of an incident acoustic wave by using the transfer matrix method. We have retained and fixed the total length of the system and changed the system internal geometry not to increase the system length too much. Another reason was to adjust the phononic band gaps and get the desired transmission properties by finding the optimum internal geometry without increasing or decreasing the total length of phononic crystals. In addition, we also propose few structures with the opportunity of applications in acoustical devices such as sonic reflectors. Our results can also be of high interest to design acoustic filters in the case that transmission of certain frequencies is necessary.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850144 ◽  
Author(s):  
ARAFA H. ALY ◽  
AHMED NAGATY ◽  
Z. KHALIFA

We have theoretically obtained the transmittance properties of one-dimensional phononic crystals incorporating a piezoelectric material as a defect layer. We have used the transfer matrix method in our analysis with/without defect materials. By increasing the thickness of the defect layer, we obtained a sharp peak created within the bandgap, that indicates to the significance of defect layer thickness on the band structure. The localized modes and a particular intensity estimated within the bandgap depend on the piezoelectric material properties. By applying different quantities of an external electric field, the position of the peak shifts to different frequencies. The electric field induces a relative change in the piezoelectric thickness. Our structure may be very useful in some applications such as sensors, acoustic switches, and energy applications.


Meccanica ◽  
2017 ◽  
Vol 53 (4-5) ◽  
pp. 923-935 ◽  
Author(s):  
Ying Wu ◽  
Kaiping Yu ◽  
Linyun Yang ◽  
Rui Zhao

2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Zheng-wei Li ◽  
Xin-sheng Fang ◽  
Bin Liang ◽  
Yong Li ◽  
Jian-chun Cheng

2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Joshua D. Bodyfelt ◽  
Mei C. Zheng ◽  
Ragnar Fleischmann ◽  
Tsampikos Kottos

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chen-Xu Liu ◽  
Gui-Lan Yu

Abstract In this paper, deep back propagation neural networks (DBP-NNs) and radial basis function neural networks (RBF-NNs) are employed to predict the dispersion relations (DRs) of one-dimensional (1D) phononic crystals (PCs). The data sets generated by transfer matrix method (TMM) are used to train the NNs and detect their prediction accuracy. In our work, filling fractions, mass density ratios and shear modulus ratios of PCs are considered as the input values of NNs. The results show that both the DBP-NNs and the RBF-NNs exhibit good performances in predicting the DRs of PCs. For one-parameter prediction, the RBF-NNs have shorter training time and remarkable prediction accuracy, for two- and three-parameter prediction, the DBP-NNs have more stable performance. The present work confirms the feasibility of predicting the DRs of PCs by NNs, and provides a useful reference for the application of NNs in the design of PCs and metamaterials.


AIP Advances ◽  
2014 ◽  
Vol 4 (12) ◽  
pp. 124202 ◽  
Author(s):  
Rayisa P. Moiseyenko ◽  
Jingfei Liu ◽  
Sarah Benchabane ◽  
Nico F. Declercq ◽  
Vincent Laude

Sign in / Sign up

Export Citation Format

Share Document