scholarly journals A particle-in-cell code comparison for ion acceleration: EPOCH, LSP, and WarpX

2021 ◽  
Vol 28 (7) ◽  
pp. 074505
Author(s):  
Joseph R. Smith ◽  
Chris Orban ◽  
Nashad Rahman ◽  
Brendan McHugh ◽  
Ricky Oropeza ◽  
...  
2020 ◽  
Vol 22 (10) ◽  
pp. 103067
Author(s):  
Joseph R Smith ◽  
Chris Orban ◽  
John T Morrison ◽  
Kevin M George ◽  
Gregory K Ngirmang ◽  
...  

2019 ◽  
Vol 37 (4) ◽  
pp. 346-353
Author(s):  
D. Sangwan ◽  
O. Culfa ◽  
C.P. Ridgers ◽  
S. Aogaki ◽  
D. Stutman ◽  
...  

AbstractWe present results of 2D particle-in-cell (PIC) simulations of carbon ion acceleration by 10 petawatt (PW) laser pulses, studying both circular polarized (CP) and linear polarized (LP) pulses. We carry out a thickness scanning of a solid carbon target to investigate the ideal thickness for carbon ion acceleration mechanisms using a 10 PW laser with an irradiance of 5 × 1022 W cm−2. The energy spectra of carbon ions and electrons and their temperature are studied. Additionally, for the carbon ions, their angular divergence is studied. It is shown that the ideal thickness for the carbon acceleration is 120 nm and the cutoff energy for carbon ions is 5 and 3 GeV for CP and LP pulses, respectively. The corresponding carbon ions temperature is ~1 and ~0.75 GeV. On the other hand, the energy cutoff for the electrons is ~500 MeV with LP and ~400 MeV with CP laser pulses. We report that the breakout afterburner mechanism is most likely causing the acceleration of carbon ions to such high energies for the optimal target thickness.


2018 ◽  
Vol 36 (4) ◽  
pp. 507-512 ◽  
Author(s):  
J. Domański ◽  
J. Badziak ◽  
M. Marchwiany

AbstractThis paper presents the results of numerical investigations into the acceleration of heavy ions by a multi-PW laser pulse of ultra-relativistic intensity, to be available with the Extreme Light Infrastructure lasers currently being built in Europe. In the numerical simulations, performed with the use of a multi-dimensional (2D3V) particle-in-cell code, the thorium target with a thickness of 50 or 200 nm was irradiated by a circularly polarized 20 fs laser pulse with an energy of ~150 J and an intensity of 1023 W/cm2. It was found that the detailed run of the ion acceleration process depends on the target thickness, though in both considered cases the radiation pressure acceleration (RPA) stage of ion acceleration is followed by a sheath acceleration stage, with a significant role in the post-RPA stage being played by the ballistic movement of ions. This hybrid acceleration mechanism leads to the production of an ultra-short (sub-picosecond) multi-GeV ion beam with a wide energy spectrum and an extremely high intensity (>1021 W/cm2) and ion fluence (>1017 cm−2). Heavy ion beams of such extreme parameters are hardly achievable in conventional RF-driven ion accelerators, so they could open the avenues to new areas of research in nuclear and high energy density physics, and possibly in other scientific domains.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Malay Dalui ◽  
W.-M. Wang ◽  
T. Madhu Trivikram ◽  
Subhrangsu Sarkar ◽  
Sheroy Tata ◽  
...  

Abstract High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.


2018 ◽  
Vol 36 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Parvin Varmazyar ◽  
Saeed Mirzanejhad ◽  
Taghi Mohsenpour

AbstractIn the interaction of short-laser pulses with a solid density target, pre-plasma can play a major role in ion acceleration processes. So far, complete analysis of pre-plasma effect on the ion acceleration by ultra-short laser pulses in the radiation pressure acceleration (RPA) regime has been unknown. Then the effect of pre-plasma on the ion acceleration efficiency is analyzed by numerical results of the particle-in-cell simulation in the RPA regime. It is shown that, for long-laser pulses (τp > 50 fs), the presence of pre-plasma makes a destructive effect on ion acceleration while it may have a contributing effect for short-laser pulses (τp < 50 fs). Therefore, the 35 fs (20 fs) laser pulse can accelerate ions up to 40 MeV (55 eV), which is almost two (three) times larger in energy rather than use of a 100 fs pulse with the same pre-plasma scale length.


2010 ◽  
Vol 28 (1) ◽  
pp. 215-221 ◽  
Author(s):  
S. Steinke ◽  
A. Henig ◽  
M. Schnürer ◽  
T. Sokollik ◽  
P.V. Nickles ◽  
...  

AbstractExperiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of 13 MeV for protons and 71 MeV for carbon ions is observed with a conversion efficiency of ~10%. Two-dimensional particle-in-cell (PIC) simulations reveal that the increase in ion energies can be attributed to a dominantly collective rather than thermal motion of the foil electrons, when the target becomes transparent for the incident laser pulse.


Sign in / Sign up

Export Citation Format

Share Document