Effect of the density ratio variation on the dynamics of a liquid jet injected into a gaseous cross-flow

2021 ◽  
Vol 33 (9) ◽  
pp. 092120
Author(s):  
Giovanni Tretola ◽  
Konstantina Vogiatzaki ◽  
Salvador Navarro-Martinez
Author(s):  
Feng Xiao ◽  
Mehriar Dianat ◽  
James J. McGuirk

A robust two-phase flow LES methodology is described, validated and applied to simulate primary breakup of a liquid jet injected into an airstream in either co-flow or cross-flow configuration. A Coupled Level Set and Volume of Fluid method is implemented for accurate capture of interface dynamics. Based on the local Level Set value, fluid density and viscosity fields are treated discontinuously across the interface. In order to cope with high density ratio, an extrapolated liquid velocity field is created and used for discretisation in the vicinity of the interface. Simulations of liquid jets discharged into higher speed airstreams with non-turbulent boundary conditions reveals the presence of regular surface waves. In practical configurations, both air and liquid flows are, however, likely to be turbulent. To account for inflowing turbulent eddies on the liquid jet interface primary breakup requires a methodology for creating physically correlated unsteady LES boundary conditions, which match experimental data as far as possible. The Rescaling/Recycling Method is implemented here to generate realistic turbulent inflows. It is found that liquid rather than gaseous eddies determine the initial interface shape, and the downstream turbulent liquid jet disintegrates much more chaotically than the non-turbulent one. When appropriate turbulent inflows are specified, the liquid jet behaviour in both co-flow and cross-flow configurations is correctly predicted by the current LES methodology, demonstrating its robustness and accuracy in dealing with high liquid/gas density ratio two-phase systems.


2015 ◽  
Vol 767 ◽  
pp. 146-172 ◽  
Author(s):  
M. Behzad ◽  
N. Ashgriz ◽  
A. Mashayek

AbstractWe investigate azimuthal instabilities which exist on the periphery of a non-turbulent liquid jet injected transversely into a gaseous cross-flow. We predict that the temporal growth of such instabilities may lead to the formation of interface corrugations, which are eventually sheared off of the jet surface (known as the jet ‘surface breakup’). In this study we employ temporal linear stability analyses to understand the nature of these instabilities. The analysis is based on a continuous formulation of momentum equations in which the jet and cross-flow are considered to be slightly miscible at the vicinity of the interface. We identify the shear instability as the primary destabilization mechanism in the flow. This inherently inviscid mechanism opposes the previously suggested mechanism of surface breakup (known as ‘boundary-layer stripping’), which is based on a viscous interpretation. The results show that the wavelengths of instabilities increase by moving away from the jet windward stagnation point toward the leeward point. We also investigate the influence of the jet-to-cross-flow density ratio on the flow stability and find that a higher ratio leads to formation of instabilities with higher wavenumbers on the jet surface. The results show that the density may have a non-monotonic stabilizing/destabilizing effect on the flow.


2007 ◽  
Vol 17 (1) ◽  
pp. 47-70 ◽  
Author(s):  
Raffaele Ragucci ◽  
Alessandro Bellofiore ◽  
Antonio Cavaliere
Keyword(s):  

1991 ◽  
Vol 37 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Kazuaki Yamagiwa ◽  
Yoshikazu Ohmae ◽  
M. Hatta Dahlan ◽  
Akira Ohkawa

Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


Author(s):  
John W. McClintic ◽  
Sean R. Klavetter ◽  
Joshua B. Anderson ◽  
James R. Winka ◽  
David G. Bogard ◽  
...  

In gas turbine engines, film cooling holes are often fed by an internal cross-flow, with flow normal to the direction of the external flow around the airfoil. Many experimental studies have used a quiescent plenum to feed model film cooling holes and thus do not account for the effects of internal cross-flow. In this study, an experimental flat plate facility was constructed to study the effects of internal cross-flow on a row of cylindrical compound angle film cooling holes. Operating conditions were scaled, based on coolant hole Reynolds number and turbulence level, to match realistic turbine engine conditions. A cross-flow channel allowed for coolant to flow alternately in either direction perpendicular to the mainstream flow. Film cooling holes were operated at blowing ratios ranging from 0.5 to 2.0 at a density ratio of 1.5. There are relatively few studies available in literature that focus on the effects of cross-flow on film cooling performance, with no studies examining the effects of internal cross-flow on film cooling with round, compound angled holes. This study showed that significantly greater adiabatic effectiveness was achieved for cross-flow in the opposite direction of the span-wise direction of the coolant holes and provides possible explanations for this result.


Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari

Abstract This paper presents the experimental analysis of the impact of swirl number of cross-flowing air stream on liquid jet spray trajectory at a fixed air flow velocity of 42 m/s with the corresponding Mach number of 0.12. The experiments were conducted for 4 different swirl numbers (0, 0.2, 0.42 and 0.73) using swirl vanes at air inlet having angles of 0°, 15°, 30° and 45° respectively. Liquid to air momentum flux ratio (q) was varied from 5 to 25. High speed (@ 500 fps) images of the spray were captured and those images were processed using MATLAB to obtain the path of the spray at various momentum flux ratios. The results show interesting trends for the spray trajectory and the jet spread in swirling air flow. High swirling flows not only lead to spray with lower radial penetration due to sharp bending and disintegration of liquid jet, but also result in spray with high jet spread and spray area. Based on the results, correlations for the spray path have been proposed which incorporates the effects of the swirl number of the air flow.


1995 ◽  
Vol 117 (4) ◽  
pp. 321-329 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor ◽  
J. H. Jong ◽  
I. G. Currie

Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.


Sign in / Sign up

Export Citation Format

Share Document