scholarly journals Simulation and parameterization of longitudinal development in extensive air showers for different hadronic interaction models

2022 ◽  
Author(s):  
Kadhom F. Fadhel ◽  
A. A. Al-Rubaiee
2019 ◽  
Vol 210 ◽  
pp. 02004 ◽  
Author(s):  
H.P. Dembinski ◽  
J.C. Arteaga-Velázquez ◽  
L. Cazon ◽  
R. Conceição ◽  
J. Gonzalez ◽  
...  

We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.


2019 ◽  
Vol 208 ◽  
pp. 08004
Author(s):  
R. Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a long-standing mystery. One of the uncertainties in UHECR observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. The number of muons observed at ground level from UHECR induced air showers is expected to depend upon the composition of primary cosmic rays. The MC prediction also depends on hadronic interaction models. One may test the hadronic interaction models by comparing the measured number of muons with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers which should have high muon purity. A high muon purity condition is imposed that requires the geometry of the shower and relative position of the given station and implies that muons dominate the signal. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08(stat:) ± 0.42(syst:) times larger than the MC prediction with the QGSJET II-03 model for protons. The same feature was also obtained for other hadronic models, such as QGSJET II-04.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950145
Author(s):  
Saeed Doostmohammadi ◽  
Seyed Jaliledin Fatemi ◽  
Maryam Nikpour

Unusual and multicore extensive air showers are detected in some experiments. Study of these kinds of showers is an important issue in nuclear collisions at high energies and need to be interpreted by hadronic interaction models. In the work, taking into account results Sleptsova et al. of which emphasized shower size variations at energies above [Formula: see text][Formula: see text]eV, and also by using of the auger experimental data, some characteristics of multicore events are investigated. Intense nuclear variations are seen in energy range of [Formula: see text]–[Formula: see text][Formula: see text]eV, and nuclear distinctive properties of multicore showers relative to normal showers are shown.


2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2019 ◽  
Vol 210 ◽  
pp. 02003
Author(s):  
Takashi Sako

Two studies by the Telescope Array group related to the hadronic interaction observed with Extensive Air Showers are reviewed. (1) Inelastic p-air cross section $ \sigma _{p - air}^{inel} = 567.0 \pm 70.5\,[{\rm{stat]}}_{ - 25}^{ + 29} [{\rm{sys}}]\,{\rm{mb}} $ and total p-p cross section $ \sigma _{p - p}^{tot} = 170_{ - 44}^{ + 48} [{\rm{stat}}]_{ - 17}^{ + 19} [{\rm{sys}}]\,{\rm{mb}} $ were determined using the 5 years of TA hybrid data with one of the 3 FD stations. These results at the highest energy $ \sqrt {S_{NN} } = 95\,{\rm{TeV}} $ showed good agreements with the extrapolation from the previous measurements and model predictions. (2) The signal sizes of SD were compared between data and MC using 7 years of TA SD data in the energy range from 1018.8 eV to 1019.2 eV. It was found that the data/MC ratios exceed unity and the deviation becomes larger when the expected fraction of muon signal, defined as muon purity P, is higher. The results support the muon excess (with respect to MC) problem reported by the previous observations.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950097
Author(s):  
Maciej Rybczyński ◽  
Zbigniew Włodarczyk

In order to examine a muon excess observed by the Pierre Auger Observatory, detailed Monte Carlo simulations were carried out for primary protons, iron nuclei and strangelets (hypothetical stable lumps of strange quark matter). We obtained a rough agreement between the simulations and the data for ordinary nuclei without any contribution of strangelets in primary flux of cosmic rays. Our simulations suggest that the shower observables are dominated by details of hadronic interaction models.


2019 ◽  
Vol 208 ◽  
pp. 11002 ◽  
Author(s):  
Felix Riehn ◽  
Ralph Engel ◽  
Anatoli Fedynitch ◽  
Thomas K. Gaisser ◽  
Todor Stanev

One of the applications of the hadronic interaction model Sibyll is the simulation of extensive air showers of ultra-high energy cosmic rays. In recent years it has become more and more clear that simulations do not agree with measurements when it comes to observables related to muons in air showers. We discuss the processes in Sibyll that are directly related to muon production in extensive air showers and describe their relation to shower observables.


2015 ◽  
Vol 754-755 ◽  
pp. 859-864
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

One of the characteristics of longitudinal development of extensive air showers is the number of charged particles and depth of shower maximum in extensive air showers as a function of primary energy, which is often used to reconstruct the elemental composition of primary cosmic rays. Studying of extensive air shower characteristics was performed by investigating the longitudinal development parameters depending on Heitler model for different primary particles. The simulation of the number of charged particles and depth of shower maximum (NandXmax) in extensive air showers of particle cascades was performed using AIRES code for SIBYLL hadronic model for different primary particles like electron, positron, gamma quanta and iron nuclei at the energy range 1014-1019eV. The comparison between the simulated longitudinal development ofNandXmaxusing SIBYLL hadronic model with two hadronic models (QGSJET99 ans SIBYLL16) has shown an opportunity for determination of cosmic ray cascade interactions in extensive air showers.


2019 ◽  
Vol 208 ◽  
pp. 03003 ◽  
Author(s):  
Javier G. Gonzalez

We present the measurement of the density of GeV muons in near-vertical air showers by the IceTop array at the South Pole. The muon density is measured at 600 m and 800 m lateral distance from the shower axis in air showers between 1 PeV and 100 PeV. This result can be used to constrain hadronic interaction models by comparing it with the outcome of Monte Carlo simulations. We show that some models do not produce muon densities in agreement with this result unless an unphysical composition of the primary cosmic ray flux is assumed.


2019 ◽  
Vol 208 ◽  
pp. 02002
Author(s):  
Tanguy Pierog

The interpretation of EAS measurements strongly depends on detailed air shower simulations. CORSIKA is one of the most commonly used air shower Monte Carlo programs. The main source of uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models even after recent updates taking into account the first LHC data. As a matter of fact the model predictions converged but at the same time more precise air shower and LHC measurements introduced new constraints. Last year a new generation of hadronic interaction models was released in CORSIKA. Sibyll 2.3c and DPMJETIII.17-1 are now available with improved descriptions of particle production and in particular the production of charmed particles. The impact of these hadronic interaction models on air shower predictions are presented here and compared to the first generation of post-LHC models, EPOS LHC and QGSJETII-04. The performance of the new models on standard air shower observables is derived. Due to the various approaches in the physics treatment, there are still large differences in the model predictions but this can already be partially resolved by comparison with the latest LHC data.


Sign in / Sign up

Export Citation Format

Share Document