scholarly journals Clarifying duplicated electromagnetic characteristics for 220-GHz two-beam extended interaction oscillator

AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015102
Author(s):  
Liangjie Bi ◽  
Che Xu ◽  
Yu Qin ◽  
Xinyu Jiang ◽  
Ran Liu ◽  
...  
1993 ◽  
Author(s):  
L. JOHNSON ◽  
A. RIVERA ◽  
M. LUNDQUIST ◽  
T. SANKS ◽  
A. SUTTON ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1930
Author(s):  
Di Shi ◽  
Taimur Aftab ◽  
Gunnar Gidion ◽  
Fatma Sayed ◽  
Leonhard M. Reindl

An electrically small patch antenna with a low-cost high-permittivity ceramic substrate material for use in a ground-penetrating radar is proposed in this work. The antenna is based on a commercial ceramic 915 MHz patch antenna with a size of 25 × 25 × 4 mm3 and a weight of 12.9 g. The influences of the main geometric parameters on the antenna’s electromagnetic characteristics were comprehensively studied. Three bandwidth improvement techniques were sequentially applied to optimize the antenna: tuning the key geometric parameters, adding cuts on the edges, and adding parasitic radiators. The designed antenna operates at around 1.3 GHz and has more than 40 MHz continuous −3 dB bandwidth. In comparison to the original antenna, the −3 and −6 dB fractional bandwidth is improved by 1.8 times and 4 times, respectively. Two antennas of the proposed design together with a customized radar were installed on an unmanned aerial vehicle (UAV) for a quick search for survivors after earthquakes or gas explosions without exposing the rescue staff to the uncertain dangers of moving on the debris.


2020 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Thomas Gremminger ◽  
Zhenwei Song ◽  
Juan Ji ◽  
Avery Foster ◽  
Kexin Weng ◽  
...  

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


Author(s):  
Che Xu ◽  
Bin Wang ◽  
Yong Yin ◽  
Liangjie Bi ◽  
Hailong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document