Review: Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations, Transport Realities and Planning Policy: Studies of Friction and Freedom in Daily Travel, the New Urban Politics, the Urban Nest

1977 ◽  
Vol 9 (12) ◽  
pp. 1433-1440 ◽  
Author(s):  
P Gould ◽  
P M Jones ◽  
C G Pickvance ◽  
D Seamon
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomasz Raducha ◽  
Maxi San Miguel

Abstract We study the joint effect of the non-linearity of interactions and noise on coevolutionary dynamics. We choose the coevolving voter model as a prototype framework for this problem. By numerical simulations and analytical approximations we find three main phases that differ in the absolute magnetisation and the size of the largest component: a consensus phase, a coexistence phase, and a dynamical fragmentation phase. More detailed analysis reveals inner differences in these phases, allowing us to divide two of them further. In the consensus phase we can distinguish between a weak or alternating consensus and a strong consensus, in which the system remains in the same state for the whole realisation of the stochastic dynamics. In the coexistence phase we distinguish a fully-mixing phase and a structured coexistence phase, where the number of active links drops significantly due to the formation of two homogeneous communities. Our numerical observations are supported by an analytical description using a pair approximation approach and an ad-hoc calculation for the transition between the coexistence and dynamical fragmentation phases. Our work shows how simple interaction rules including the joint effect of non-linearity, noise, and coevolution lead to complex structures relevant in the description of social systems.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-35
Author(s):  
Dietmar Zinner ◽  
Matthias Klapproth ◽  
Andrea Schell ◽  
Lisa Ohrndorf ◽  
Desalegn Chala ◽  
...  

Abstract. Thorough knowledge of the ecology of a species or population is an essential prerequisite for understanding the impact of ecology on the evolution of their respective social systems. Because of their diversity of social organizations, baboons (Papio spp.) are a useful model for comparative studies. Comparative ecological information was missing for Guinea baboons (Papio papio), however. Here we provide data on the ecology of Guinea baboons in a comparative analysis on two geographical scales. First, we compare climate variables and land cover among areas of occurrence of all six baboon species. Second, we describe home range size, habitat use, ranging behaviour, and diet from a local population of Guinea baboons ranging near the Centre de Recherche de Primatologie (CRP) Simenti in the Niokolo-Koba National Park, Senegal. Home ranges and daily travel distances at Simenti varied seasonally, yet the seasonal patterns in their daily travel distance did not follow a simple dry vs. rainy season pattern. Chemical food composition falls within the range of other baboon species. Compared to other baboon species, areas occupied by Guinea baboons experience the highest variation in precipitation and the highest seasonality in precipitation. Although the Guinea baboons' multi-level social organization is superficially similar to that of hamadryas baboons (P. hamadryas), the ecologies of the two species differ markedly. Most Guinea baboon populations, including the one at Simenti, live in more productive habitats than hamadryas baboons. This difference in the ecology of the two species contradicts a simple evolutionary relation between ecology and social system and suggests that other factors have played an additional role here.


Author(s):  
Quentin Stevens

Analysis of the emergent theoretical, empirical, and planning policy studies of ‘temporary uses’ of derelict urban spaces in European cities illustrates three distinct realms where the concept of ‘creativity’ is defined and applied to urban management and redevelopment approaches: in terms of creative production, consumption of creativity, and creative governance. These concepts mesh together with a liberalization of urban planning and governance. Creative planning for temporary use suggests not just reducing the regulation of urban activity and built form, but transforming the aims and methods of planning itself to be more dynamic and more facilitative.


Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


Author(s):  
J.R. McIntosh ◽  
D.L. Stemple ◽  
William Bishop ◽  
G.W. Hannaway

EM specimens often contain 3-dimensional information that is lost during micrography on a single photographic film. Two images of one specimen at appropriate orientations give a stereo view, but complex structures composed of multiple objects of graded density that superimpose in each projection are often difficult to decipher in stereo. Several analytical methods for 3-D reconstruction from multiple images of a serially tilted specimen are available, but they are all time-consuming and computationally intense.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


Author(s):  
P.M. Frederik ◽  
K.N.J. Burger ◽  
M.C.A. Stuart ◽  
A.J. Verkleij

Cellular membranes are often composed of phospholipid mixtures in which one or more components have a tendency to adopt a type II non-bilayer lipid structure such as the inverted hexagonal (H||) phase. The formation of a type II non-bilayer intermediate, the inverted lipid micel is proposed as the initial step in membrane fusion (Verkleij 1984, Siegel, 1986). In the various forms of cellular transport mediated by carrier vesicles (e.g. exocytosis, endocytosis) the regulation of membrane fusion, and hence of inverted lipid micel formation, is of vital importance.We studied the phase behaviour of simple and complex lipid mixtures by cryo-electron microscopy to gain more insight in the ultrastructure of different lipid phases (e.g. Pβ’, Lα, H||) and in the complex membrane structures arising after Lα < - > H|| phase changes (e.g. isotropic, cubic). To prepare hydrated thin films a 700 mesh hexagonal grid (without supporting film) was dipped into and withdrawn from a liposome suspension. The excess fluid was blotted against filter paper and the thin films that form between the bars of the specimen grid were immediately (within 1 second) vitrified by plunging of the carrier grids into ethane cooled to its melting point by liquid nitrogen (Dubochet et al., 1982). Surface active molecules such as phospholipids play an important role in the formation and thinning of these aqueous thin films (Frederik et al., 1989). The formation of two interfacial layers at the air-water interfaces requires transport of surface molecules from the suspension as well as the orientation of these molecules at the interfaces. During the spontaneous thinning of the film the interfaces approach each other, initially driven by capillary forces later by Van der Waals attraction. The process of thinning results in the sorting by size of the suspended material and is also accompanied by a loss of water from the thinner parts of the film. This loss of water may result in the concentration and eventually in partial dehydration of suspended material even if thin films are vitrified within 1 sec after their formation. Film formation and vitrification were initiated at temperatures between 20-60°C by placing die equipment in an incubator provided widi port holes for the necessary manipulations. Unilamellar vesicles were made from dipalmitoyl phosphatidyl choline (DPPC) by an extrusion method and showed a smooth (Lα) or a rippled (PB’.) structure depending on the temperature of the suspensions and the temperature of film formation (50°C resp. 39°C) prior to vitrification. The thermotropic phases of hydrated phospholipids are thus faithfully preserved in vitrified thin films (fig. a,b). Complex structures arose when mixtures of dioleoylphosphatidylethanol-amine (DOPE), dioleoylphosphatidylcholine (DOPC) and cholesterol (molar ratio 3/1/2) are heated and used for thin film formation. The tendency of DOPE to adopt the H|| phase is responsible for the formation of complex structures in this lipid mixture. Isotropic and cubic areas (fig. c,d) having a bilayer structure are found in coexistence with H|| cylinders (fig. e). The formation of interlamellar attachments (ILA’s) as observed in isotropic and cubic structures is also thought to be of importance in biological fusion events. Therefore the study of the fusion activity of influenza B virus with liposomes (DOPE/DOPC/cholesterol/ganglioside in a molar ratio 1/1/2/0.2) was initiated. At neutral pH only adsorption of virus to liposomes was observed whereas 2 minutes after a drop in pH (7.4 - > 5.4) fusion between virus and liposome membranes was demonstrated (fig. f). The micrographs illustrate the exciting potential of cryo-electron microscopy to study lipid-lipid and lipid-protein interactions in hydrated specimens.


1996 ◽  
Vol 5 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Kenyatta O. Rivers ◽  
Linda J. Lombardino ◽  
Cynthia K. Thompson

The effects of training in letter-sound correspondences and phonemic decoding (segmenting and blending skills) on three kindergartners' word recognition abilities were examined using a single-subject multiple-baseline design across behaviors and subjects. Whereas CVC pseudowords were trained, generalization to untrained CVC pseudowords, untrained CVC real words, untrained CV and VC pseudowords, and untrained CV and VC real words were assessed. Generalization occurred to all of the untrained constructions for two of the three subjects. The third subject did not show the same degree of generalization to VC pseudowords and real words; however, after three training sessions, this subject read all VC constructions with 100% accuracy. Findings are consistent with group training studies that have shown the benefits of decoding training on word recognition and spelling skills and with studies that have demonstrated the effects of generalization to less complex structures when more complex structures are trained.


Sign in / Sign up

Export Citation Format

Share Document