Binocular-Disparity-Dependent Upper—Lower Hemifield Anisotropy and Left—Right Hemifield Isotropy as Revealed by Dynamic Random-Dot Stereograms

Perception ◽  
1976 ◽  
Vol 5 (2) ◽  
pp. 129-141 ◽  
Author(s):  
Bela Julesz ◽  
Bruno Breitmeyer ◽  
Walter Kropfl

Dynamic random-dot stereograms devoid of all monocular depth cues were used to measure the limits of temporal and spatial resolution in the center of the visual field. The temporal durations for detecting a small, briefly presented test square of different binocular disparity than the surround varied as a function of its location and binocular disparity. The test squares presented in the upper hemifield were detectable at consistently shorter durations than those presented in the lower hemifield for a surround disparity which was uncrossed relative to the fixation marker. For crossed surround disparity this preference reversed, resulting in a superiority of the lower hemifield. The anisotropy diminished for zero surround disparity. No such anisotropy was found when left and right visual hemifields were compared. It was also shown that this upper—lower temporal anisotropy (and left—right isotropy) is paralleled by a similar disparity-dependent upper—lower anisotropy (and left—right isotropy) in spatial resolution. Introduction of monocular clues into the stereograms tended to eliminate the anisotropics. This implies that the anisotropics reflect the spatiotemporal properties and distribution of binocular disparity detectors in the human cortex and result in a tilted surface that pivots around the horizontal midline in the space of binocular depth perception.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yersultan Mirasbekov ◽  
Adina Zhumakhanova ◽  
Almira Zhantuyakova ◽  
Kuanysh Sarkytbayev ◽  
Dmitry V. Malashenkov ◽  
...  

AbstractA machine learning approach was employed to detect and quantify Microcystis colonial morphospecies using FlowCAM-based imaging flow cytometry. The system was trained and tested using samples from a long-term mesocosm experiment (LMWE, Central Jutland, Denmark). The statistical validation of the classification approaches was performed using Hellinger distances, Bray–Curtis dissimilarity, and Kullback–Leibler divergence. The semi-automatic classification based on well-balanced training sets from Microcystis seasonal bloom provided a high level of intergeneric accuracy (96–100%) but relatively low intrageneric accuracy (67–78%). Our results provide a proof-of-concept of how machine learning approaches can be applied to analyze the colonial microalgae. This approach allowed to evaluate Microcystis seasonal bloom in individual mesocosms with high level of temporal and spatial resolution. The observation that some Microcystis morphotypes completely disappeared and re-appeared along the mesocosm experiment timeline supports the hypothesis of the main transition pathways of colonial Microcystis morphoforms. We demonstrated that significant changes in the training sets with colonial images required for accurate classification of Microcystis spp. from time points differed by only two weeks due to Microcystis high phenotypic heterogeneity during the bloom. We conclude that automatic methods not only allow a performance level of human taxonomist, and thus be a valuable time-saving tool in the routine-like identification of colonial phytoplankton taxa, but also can be applied to increase temporal and spatial resolution of the study.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Yassin Meklach ◽  
Chantal Camenisch ◽  
Abderrahmane Merzouki ◽  
Ricardo Garcia Herrera

Archival records and historical documents offer direct observation of weather and atmospheric conditions and have the highest temporal and spatial resolution, and precise dating, of the available climate proxies. They also provide information about variables such as temperature, precipitation and climate extremes, as well as floods, droughts and storms. The present work studied Arab-Islamic documentary sources covering the western Mediterranean region (documents written by Arab-Islamic historians that narrate social, political and religious history) available for the period AD 680–1815. They mostly provide information on hydrometeorological events. In Iberia the most intense droughts were reported during AD 747–753, AD 814–822, AD 846–847, AD 867–874 and AD 914–915 and in the Maghreb AD 867–873, AD 898–915, AD 1104–1147, AD 1280–1340 and AD 1720–1815 had prevalent drought conditions. Intense rain episodes are also reported.


2002 ◽  
Vol 22 (12) ◽  
pp. 4147-4157 ◽  
Author(s):  
Eleni Goshu ◽  
Hui Jin ◽  
Rachel Fasnacht ◽  
Mike Sepenski ◽  
Jacques L. Michaud ◽  
...  

ABSTRACT The mouse genome contains two Sim genes, Sim1 and Sim2. They are presumed to be important for central nervous system (CNS) development because they are homologous to the Drosophila single-minded (sim) gene, mutations in which cause a complete loss of CNS midline cells. In the mammalian CNS, Sim2 and Sim1 are coexpressed in the paraventricular nucleus (PVN). While Sim1 is essential for the development of the PVN (J. L. Michaud, T. Rosenquist, N. R. May, and C.-M. Fan, Genes Dev. 12:3264-3275, 1998), we report here that Sim2 mutant has a normal PVN. Analyses of the Sim1 and Sim2 compound mutants did not reveal obvious genetic interaction between them in PVN histogenesis. However, Sim2 mutant mice die within 3 days of birth due to lung atelectasis and breathing failure. We attribute the diminished efficacy of lung inflation to the compromised structural components surrounding the pleural cavity, which include rib protrusions, abnormal intercostal muscle attachments, diaphragm hypoplasia, and pleural mesothelium tearing. Although each of these structures is minimally affected, we propose that their combined effects lead to the mechanical failure of lung inflation and death. Sim2 mutants also develop congenital scoliosis, reflected by the unequal sizes of the left and right vertebrae and ribs. The temporal and spatial expression patterns of Sim2 in these skeletal elements suggest that Sim2 regulates their growth and/or integrity.


2011 ◽  
Vol 22 (2) ◽  
pp. 206-208
Author(s):  
Deane L. S. Yim ◽  
Mark C. K. Hamilton ◽  
Robert M. R. Tulloh

AbstractWe report the case of an adolescent who was presented with long-standing exertional symptoms, and was diagnosed with an anomalous right coronary arterial origin arising above the commissural junction between the left and right aortic sinus, with inter-arterial and intramural compression. The precise origin of this lesion outside the aortic sinuses is unusual, and multi-detector computed tomography gave excellent definition and spatial resolution of the anomalous origin and course. It is crucial to have a high index of suspicion of exertional symptoms, as sudden death may be the first manifestation of an anomalous coronary artery.


Author(s):  
Majid Karami ◽  
Somayeh Davoodabadi Farahani ◽  
Farshad Kowsary ◽  
Amir Mosavi

In this research, a novel method to investigation the transient heat transfer coefficient in a channel is suggested experimentally, in which the water flow, itself, is considered both just liquid phase and liquid-vapor phase. The experiments were designed to predict the temporal and spatial resolution of Nusselt number. The inverse technique method is non-intrusive, in which time history of temperature is measured, using some thermocouples within the wall to provide input data for the inverse algorithm. The conjugate gradient method is used mostly as an inverse method. The temporal and spatial changes of heat flux, Nusselt number, vapor quality, convection number, and boiling number have all been estimated, showing that the estimated local Nusselt numbers of flow for without and with phase change are close to those predicted from the correlations of Churchill and Ozoe (1973) and Kandlikar (1990), respectively. This study suggests that the extended inverse technique can be successfully utilized to calculate the local time-dependent heat transfer coefficient of boiling flow.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo Hyeon Lim ◽  
Joon Sik Park ◽  
Jaeseok Park ◽  
Seung Hong Choi

AbstractTemporal and spatial resolution of dynamic contrast-enhanced MR imaging (DCE-MRI) is critical to reproducibility, and the reproducibility of high-resolution (HR) DCE-MRI was evaluated. Thirty consecutive patients suspected to have brain tumors were prospectively enrolled with written informed consent. All patients underwent both HR-DCE (voxel size, 1.1 × 1.1 × 1.1 mm3; scan interval, 1.6 s) and conventional DCE (C-DCE; voxel size, 1.25 × 1.25 × 3.0 mm3; scan interval, 4.0 s) MRI. Regions of interests (ROIs) for enhancing lesions were segmented twice in each patient with glioblastoma (n = 7) to calculate DCE parameters (Ktrans, Vp, and Ve). Intraclass correlation coefficients (ICCs) of DCE parameters were obtained. In patients with gliomas (n = 25), arterial input functions (AIFs) and DCE parameters derived from T2 hyperintense lesions were obtained, and DCE parameters were compared according to WHO grades. ICCs of HR-DCE parameters were good to excellent (0.84–0.95), and ICCs of C-DCE parameters were moderate to excellent (0.66–0.96). Maximal signal intensity and wash-in slope of AIFs from HR-DCE MRI were significantly greater than those from C-DCE MRI (31.85 vs. 7.09 and 2.14 vs. 0.63; p < 0.001). Both 95th percentile Ktrans and Ve from HR-DCE and C-DCE MRI could differentiate grade 4 from grade 2 and 3 gliomas (p < 0.05). In conclusion, HR-DCE parameters generally showed better reproducibility than C-DCE parameters, and HR-DCE MRI provided better quality of AIFs.


Sign in / Sign up

Export Citation Format

Share Document