Effect of Brightness on Perceived Distance as a Figure—Ground Phenomenon

Perception ◽  
1982 ◽  
Vol 11 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Hiroyuki Egusa

Two experiments were performed to compare the effects of brightness on perceived distance in the situations in which a target appeared either as figure (experiment 1) or as ground (experiment 2). In experiment 1 the stimulus array consisted of two small homogeneous target regions and a homogeneous surrounding region common to both; in experiment 2 it consisted of two large homogeneous target regions and a textured surrounding region. Subjects were asked to indicate which of the two targets appeared nearer and to make a verbal judgment of perceived depth between them. The results showed that the target having the greater brightness contrast with the surround is apt to be judged nearer when the targets appear as figure, and farther when they appear as ground. These findings support Egusa's hypothesis that the effect of brightness on perceived distance can be attributed to figure—ground differentiation between the target region to be judged and its direct surround.

Author(s):  
D.F. Bowling

High school cosmetology students study the methods and effects of various human hair treatments, including permanents, straightening, conditioning, coloring and cutting. Although they are provided with textbook examples of overtreatment and numerous hair disorders and diseases, a view of an individual hair at the high resolution offered by an SEM provides convincing evidence of the hair‘s altered structure. Magnifications up to 2000X provide dramatic differences in perspective. A good quality classroom optical microscope can be very informative at lower resolutions.Students in a cosmetology class are initially split into two groups. One group is taught basic controls on the SEM (focus, magnification, brightness, contrast, specimen X, Y, and Z axis movements). A healthy, untreated piece of hair is initially examined on the SEM The second group cements a piece of their own hair on a stub. The samples are dryed quickly using heat or vacuum while the groups trade places and activities.


Author(s):  
T. J. Marini ◽  
S. L. Weiss ◽  
A. Gupta ◽  
Y. T. Zhao ◽  
T. M. Baran ◽  
...  

Abstract Purpose Thyroid ultrasound is a key tool in the evaluation of the thyroid, but billions of people around the world lack access to ultrasound imaging. In this study, we tested an asynchronous telediagnostic ultrasound system operated by individuals without prior ultrasound training which may be used to effectively evaluate the thyroid and improve access to imaging worldwide. Methods The telediagnostic system in this study utilizes volume sweep imaging (VSI), an imaging technique in which the operator scans the target region with simple sweeps of the ultrasound probe based on external body landmarks. Sweeps are recorded and saved as video clips for later interpretation by an expert. Two operators without prior ultrasound experience underwent 8 h of training on the thyroid VSI protocol and the operation of the telemedicine platform. After training, the operators scanned patients at a health center in Lima. Telediagnostic examinations were sent to the United States for remote interpretation. Standard of care thyroid ultrasound was performed by an experienced radiologist at the time of VSI examination to serve as a reference standard. Results Novice operators scanned 121 subjects with the thyroid VSI protocol. Of these exams, 88% were rated of excellent image quality showing complete or near complete thyroid visualization. There was 98.3% agreement on thyroid nodule presence between VSI teleultrasound and standard of care ultrasound (Cohen’s kappa 0.91, P < 0.0001). VSI measured the thyroid size, on average, within 5 mm compared to standard of care. Readers of VSI were also able to effectively characterize thyroid nodules, and there was no significant difference in measurement of thyroid nodule size (P = 0.74) between VSI and standard of care. Conclusion Thyroid VSI telediagnostic ultrasound demonstrated both excellent visualization of the thyroid gland and agreement with standard of care thyroid ultrasound for nodules and thyroid size evaluation. This system could be deployed for evaluation of palpable thyroid abnormalities, nodule follow-up, and epidemiological studies to promote global health and improve the availability of diagnostic imaging in underserved communities.


Author(s):  
Giusy Tiseo ◽  
Marco Falcone ◽  
Alessandro Leonildi ◽  
Cesira Giordano ◽  
Simona Barnini ◽  
...  

Abstract A 68-year-old man had recurrent bacteremia by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae resistant to ceftazidime-avibactam and cefiderocol. The sequencing of a target region showed that it harbored a KPC-3 variant enzyme (D179Y; KPC-31), which confers resistance to ceftazidime-avibactam and restores meropenem susceptibility. The patient was successfully treated with meropenem-vaborbactam.


2021 ◽  
pp. 1-12
Author(s):  
Xi Bai ◽  
Peter Vajkoczy ◽  
Katharina Faust

<b><i>Objective:</i></b> The pathophysiology of dystonia is poorly understood. As opposed to secondary forms of dystonia, primary dystonia has long been believed to lack any neuroanatomical substrate. During trajectory planning for DBS, however, conspicuous T2-hyperinstensive signal alterations (SA) were registered within the target region, even in young patients, where ischemia is rare. <b><i>Methods:</i></b> Fifty MRIs of primary dystonia patients scheduled for DBS were analyzed. Total basal ganglia (BG) volumes, as well as proportionate SA volumes, were measured and compared to 50 age-matched control patients. <b><i>Results:</i></b> There was a 10-fold preponderance of percentaged SA within the globus pallidus (GP) in dystonia patients. The greatest disparity was in young patients &#x3c;25 years. Also, total BG volume differences were observed with larger GP and markedly smaller putamen and caudate in the dystonia group. <b><i>Conclusions:</i></b> BG morphology in primary dystonia differed from a control population. Volume reductions of the putamen and caudate may reflect functional degeneration, while volume increases of the GP may indicate overactivity. T2-hyperintensive SA in the GP of young primary dystonia patients, where microvascular lesions are highly unlikely, are striking. Their pathogenic role remains unclear.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Jared McCune ◽  
Alex Riley ◽  
Bernard Chen

Wineinformatics is a new data science research area that focuses on large amounts of wine-related data. Most of the current Wineinformatics researches are focused on supervised learning to predict the wine quality, price, region and weather. In this research, unsupervised learning using K-means clustering with optimal K search and filtration process is studied on a Bordeaux-region specific dataset to form clusters and find representative wines in each cluster. 14,349 wines representing the 21st century Bordeaux dataset are clustered into 43 and 13 clusters with detailed analysis on the number of wines, dominant wine characteristics, average wine grades, and representative wines in each cluster. Similar research results are also generated and presented on 435 elite wines (wines that scored 95 points and above on a 100 points scale). The information generated from this research can be beneficial to wine vendors to make a selection given the limited number of wines they can realistically offer, to connoisseurs to study wines in a target region/vintage/price with a representative short list, and to wine consumers to get recommendations. Many possible researches can adopt the same process to analyze and find representative wines in different wine making regions/countries, vintages, or pivot points. This paper opens up a new door for Wineinformatics in unsupervised learning researches.


2021 ◽  
Vol 7 (11) ◽  
pp. eabf1913
Author(s):  
Takuma Kitanishi ◽  
Ryoko Umaba ◽  
Kenji Mizuseki

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.


Sign in / Sign up

Export Citation Format

Share Document