Rapid formation of macroscopic fractal structures by the plasma of a laser discharge

1993 ◽  
Vol 23 (6) ◽  
pp. 453-454
Author(s):  
Nikolai E Kask ◽  
Gennadii M Fedorov
2003 ◽  
Author(s):  
F. Aporti ◽  
F. Ferro-Milone ◽  
A. Cananzi ◽  
T. A. Minelli ◽  
V. Nofrate ◽  
...  

2021 ◽  
Author(s):  
Yashesh Sakharikar ◽  
Arastou Pournadali Khamseh ◽  
Edward P. DeMauro ◽  
Doyle D. Knight

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tong Chu ◽  
Yu Yu ◽  
Xiaoxue Wang

Based on the oligopoly game theory and the intellectual property rights protection policy, we investigate the complex dynamical behaviors of a mixed duopoly game with quadratic cost. In the new system, a few parameters are improved by considering intellectual property rights protection and the stability conditions of the Nash equilibrium point are discussed in detail. A set of the two-dimensional bifurcation diagrams is demonstrated by using numerical modeling, and these diagrams show abundant complex dynamical behaviors, such as coexistence of attractors, different bifurcation, and fractal structures. These dynamical properties can present the long-run effects of strengthening intellectual property protection.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 272
Author(s):  
Mehmet F. Cansizoglu ◽  
Mesut Yurukcu ◽  
Tansel Karabacak

Chemical removal of materials from the surface is a fundamental step in micro- and nano-fabrication processes. In conventional plasma etching, etchant molecules are non-directional and perform a uniform etching over the surface. However, using a highly directional obliquely incident beam of etching agent, it can be possible to engineer surfaces in the micro- or nano- scales. Surfaces can be patterned with periodic morphologies like ripples and mounds by controlling parameters including the incidence angle with the surface and sticking coefficient of etching particles. In this study, the dynamic evolution of a rippled morphology has been investigated during oblique angle etching (OAE) using Monte Carlo simulations. Fourier space and roughness analysis were performed on the resulting simulated surfaces. The ripple formation was observed to originate from re-emission and shadowing effects during OAE. Our results show that the ripple wavelength and root-mean-square roughness evolved at a more stable rate with accompanying quasi-periodic ripple formation at higher etching angles (θ > 60°) and at sticking coefficient values (Sc) 0.5 ≤ Sc ≤ 1. On the other hand, smaller etching angle (θ < 60°) and lower sticking coefficient values lead to a rapid formation of wider and deeper ripples. This result of this study can be helpful to develop new surface patterning techniques by etching.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 957
Author(s):  
JunHwee Jang ◽  
Eun-Jung Lee

Cell spheroids have been studied as a biomimic medicine for tissue healing using cell sources. Rapid cell spheroid production increases cell survival and activity as well as the efficiency of mass production by reducing processing time. In this study, two-dimensional MXene (Ti3C2) particles were used to form mesenchymal stem cell spheroids, and the optimal MXene concentration, spheroid-production times, and bioactivity levels of spheroid cells during this process were assessed. A MXene concentration range of 1 to 10 μg/mL induced spheroid formation within 6 h. The MXene-induced spheroids exhibited osteogenic-differentiation behavior, with the highest activity levels at a concentration of 5 μg/mL. We report a novel and effective method for the rapid formation of stem cell spheroids using MXene.


1989 ◽  
Vol 16 (3) ◽  
pp. 274-280
Author(s):  
Boris Isomaa ◽  
Henry Hägerstrand ◽  
Gun I.L. Paatero

Amphiphilic compounds with distinct apolar and polar parts are readily intercalated into the erythrocyte membrane. When intercalated into the membrane, amphiphiles are probably orientated so that the polar head is at the polar-apolar interface of the lipid bilayer and the hydrophobic part within the apolar core of the bilayer. However, by virtue of their difference in molecular shape from the bulk lipids of the lipid bilayer, it is possible that the intercalated amphiphiles are partly segregated from bulk lipids and accumulate at protein-lipid interfaces in the bilayer, where the packing of the bilayer lipids may be less ordered. Our studies show that amphiphiles, when intercalated into the erythrocyte membrane, trigger alterations in several membrane-connected functions. Some of the alterations induced (decreased osmotic fragility, increased passive potassium fluxes) seem to be due to non-specific interactions of the amphiphiles with the membrane, whereas other functions (ion transport mediated by membrane proteins, regulation of cell shape) seem to be sensitive to particular features of the amphiphiles. Our studies indicate that the intercalation of amphiphiles into the erythrocyte membrane must involve rearrangements within the lipid bilayer. We have suggested that, when intercalated into the lipid bilayer, amphiphiles trigger a rapid formation of non-bilayer phases, which protect the bilayer against a collapse and bring about a trans-bilayer redistribution of intercalated amphiphiles as well as of bilayer lipids. At high sublytic concentrations, this process may also involve a release of microvesicles from the membrane.


2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


Sign in / Sign up

Export Citation Format

Share Document