Project Vesta: Fire in Dry Eucalypt Forest

Author(s):  
JS Gould ◽  
WL McCaw ◽  
NP Cheney ◽  
PF Ellis ◽  
IK Knight ◽  
...  

Project Vesta was a comprehensive research project to investigate the behaviour and spread of high-intensity bushfires in dry eucalypt forests with different fuel ages and understorey vegetation structures. The project was designed to quantify age-related changes in fuel attributes and fire behaviour in dry eucalypt forests typical of southern Australia. The four main scientific aims of Project Vesta were: To quantify the changes in the behaviour of fire in dry eucalypt forest as fuel develops with age (i.e. time since fire); To characterise wind speed profiles in forest with different overstorey and understorey vegetation structure in relation to fire behaviour; To develop new algorithms describing the relationship between fire spread and wind speed, and fire spread and fuel characteristics including load, structure and height; and to develop a National Fire Behaviour Prediction System for dry eucalypt forests. These aims have been addressed through a program of experimental burning and associated studies at two sites in the south-west of Western Australia.

2008 ◽  
Author(s):  
JS Gould ◽  
WL McCaw ◽  
NP Cheney ◽  
PF Ellis ◽  
S Matthews

An effective response to bushfires relies on accurate predictions of fire behaviour, particularly the rate of spread, intensity and ‘spotting’. This field guide has been developed to provide a systematic method for assessing fuel hazard and predicting potential fire behaviour in dry eucalypt forest. It will assist in making vital decisions that ensure the protection of fire crews and the community. This guide integrates Project Vesta research findings with the Victorian Overall Fuel Hazard Guide and is applicable to dry eucalypt forests throughout southern Australia. Fuel assessment is based on the hazard scoring system employed during Project Vesta which investigated the effects of fuel age and understorey vegetation structure on fire behaviour in these forests. Information provided in this guide can be used to: Define and identify different fuel layers and components of fuel structure and hazard; Determine the hazard score of surface and near-surface fuel layers and the height of the near-surface fuel for fire spread prediction; Determine elevated fuel height for flame height prediction; and determine surface fuel hazard score and bark hazard score for spotting distance prediction. The Field Guide provides tables to predict the potential rate of spread of a bushfire burning in dry eucalypt forest under summer conditions, and can also be used to predict flame height and maximum spotting distance. The guide also allows users to determine the moisture content of fine dead fuels throughout the day, and to account for the effect of slope on the rate of spread of a fire.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


1998 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
NP Cheney ◽  
JS Gould ◽  
WR Catchpole

This pager describes a model to predict fire spread in grasslands from wind speed at 10 m, dead fuel moisture, and degree of grass curing in three defined pasture types, The model was developed from spread measurements of experimental fins that were adjusted to their potential rate of spread at wide fronts. Extrapolations of the model were compared with spread data from 20 major wildfires in Australia. This model uses different functions to describe the relationship between rate of spread and wind speed above and below a critical wind speed of 5 km h-1. A linear relationship is used below 5 km h-1; above 5 km h-1 rate of spread is described by a power function of wind speed with an exponent of less than 1.


2018 ◽  
Vol 27 (5) ◽  
pp. 363 ◽  
Author(s):  
J. J. Hollis ◽  
W. L. McCaw ◽  
M. G. Cruz

Coarse woody debris (>0.6 cm in diameter) is an important component of the fuel complex in Australian eucalypt forests, influencing both fire behaviour, smoke production and post-fire ecological processes. We investigated how physical characteristics of woody fuel affected ignition and consumption during an experimental fire where the fuel complex characteristics, fire weather and fire behaviour varied within a narrow range. Decay status, bark condition, arrangement, suspension and extent of charring were classified for 2866 coarse woody fuel particles. We used generalised linear model (GLM) analysis to explain ignition success and the extent of consumption of individual particles, with a focus on larger diameter fuels (>7.5 cm in diameter), which comprised 83% of the woody fuel load and 94% of the woody fuel consumed during the flaming and smouldering stages of combustion. Ignition success was best explained by a model that included fuel arrangement (a surrogate of fuel proximity), suspension and decay status. The extent of fuel consumption was greater for pieces in advanced stages of decay, but suspension (inversely related) and arrangement (directly related) also affected the outcome. Forest management practices, previous fire history and other natural disturbances are likely to influence the distribution of pre-fire diameters and suspension classes that characterise large woody fuels at a site, and will therefore influence woody fuel consumption. This has practical implications for quantifying heat release and atmospheric emissions from fires burning in forests with different management histories.


2017 ◽  
Vol 26 (6) ◽  
pp. 491 ◽  
Author(s):  
John Loschiavo ◽  
Brett Cirulis ◽  
Yingxin Zuo ◽  
Bronwyn A. Hradsky ◽  
Julian Di Stefano

Accurate fire severity maps are fundamental to the management of flammable landscapes. Severity mapping methods have been developed and tested for wildfire, but need further refinement for prescribed fire. We evaluated the accuracy of two severity mapping methods for a low-intensity, patchy prescribed fire in a south-eastern Australian eucalypt forest: (1) the Normalised Difference Vegetation Index (NDVI) derived from RapidEye satellite imagery, and (2) PHOENIX RapidFire, a fire-spread simulation model. We used each method to generate a fire severity map (four-category: unburnt, low, moderate and severe), and then validated the maps against field-based data. We used error matrices and the Kappa statistic to assess mapping accuracy. Overall, the satellite-based map was more accurate (75%; Kappa±95% confidence interval 0.54±0.06) than the modelled map (67%; Kappa 0.40±0.06). Both methods overestimated the area of unburnt forest; however, the satellite-based map better represented moderately burnt areas. Satellite- and model-based methods both provide viable approaches for mapping prescribed fire severity, but refinements could further improve map accuracy. Appropriate severity mapping methods are essential given the increasing use of prescribed fire as a forest management tool.


2007 ◽  
Vol 37 (12) ◽  
pp. 2438-2455 ◽  
Author(s):  
David V. Sandberg ◽  
Cynthia L. Riccardi ◽  
Mark D. Schaaf

The Fuel Characteristic Classification System (FCCS) includes equations that calculate energy release and one-dimensional spread rate in quasi-steady state fires in heterogeneous but spatially-uniform wildland fuelbeds, using a reformulation of the widely used Rothermel fire spread model. This reformulation provides an automated means to predict fire behavior under any environmental conditions in any natural, modified, or simulated wildland fuelbed. The formulation may be used to compare potential fire behavior between fuelbeds that differ in time, space, or as a result of management, and provides a means to classify and map fuelbeds based on their expected surface fire behavior under any set of defined environmental conditions (i.e., effective wind speed and fuel moisture content). Model reformulation preserves the basic mathematical framework of the Rothermel fire spread model, reinterprets data from two of the original basic equations in his model, and offers a new conceptual formulation that allows the direct use of inventoried fuel properties instead of stylized fuel models. Alternative methods for calculating the effect of wind speed and fuel moisture, based on more recent literature, are also provided. This reformulation provides a framework for the incremental improvement in quantifying fire behaviour parameters in complex fuelbeds and for modeling fire spread.


2011 ◽  
Vol 70 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Imre Cseresnyés ◽  
Orsolya Szécsy ◽  
Péter Csontos

Fire risk in Austrian pine (Pinus nigra) plantations under various temperature and wind conditions The Austrian pine (Pinus nigra), an introduced conifer in Hungary, forms a highly flammable vegetation type. The fire risk of such stands was examined using McArthur's empirical forest fire danger model. Our study focused on the effects of temperature and wind speed on fire behaviour. By keeping the input parameters of the model constant while changing temperature andwind speed within a specified interval the resulting fire danger index (FDI) and fire behaviour were examined. The applied fixed parameters were: 30 °C temperature, 30% relative humidity, 30 km h-1 wind speed, 30 degree of slope and drought factor value 10. The annual trends of the Byram-Keetch drought index (BKDI) and the drought factor were also calculated. Our results show that increasing temperature and wind speed raises the FDI, flame height, rate of fire spread (ROS) and spotting distance. The amount of fuel does not influence the FDI, but increasing the amount promotes the ROS and raises the flame height. Wind speed was the most important factor in the ROS. A serious fire risk of these plantations was determined. The reliability of McArthur's model was proved by comparison of our results with experimental laboratory data based on literature.


2019 ◽  
Vol 28 (8) ◽  
pp. 640
Author(s):  
J. J. Hollis ◽  
W. L. McCaw ◽  
M. G. Cruz

Coarse woody debris (>0.6cm in diameter) is an important component of the fuel complex in Australian eucalypt forests, influencing both fire behaviour, smoke production and post-fire ecological processes. We investigated how physical characteristics of woody fuel affected ignition and consumption during an experimental fire where the fuel complex characteristics, fire weather and fire behaviour varied within a narrow range. Decay status, bark condition, arrangement, suspension and extent of charring were classified for 2866 coarse woody fuel particles. We used generalised linear model (GLM) analysis to explain ignition success and the extent of consumption of individual particles, with a focus on larger diameter fuels (>7.5cm in diameter), which comprised 83% of the woody fuel load and 94% of the woody fuel consumed during the flaming and smouldering stages of combustion. Ignition success was best explained by a model that included fuel arrangement (a surrogate of fuel proximity), suspension and decay status. The extent of fuel consumption was greater for pieces in advanced stages of decay, but suspension (inversely related) and arrangement (directly related) also affected the outcome. Forest management practices, previous fire history and other natural disturbances are likely to influence the distribution of pre-fire diameters and suspension classes that characterise large woody fuels at a site, and will therefore influence woody fuel consumption. This has practical implications for quantifying heat release and atmospheric emissions from fires burning in forests with different management histories.


2007 ◽  
Vol 16 (4) ◽  
pp. 414 ◽  
Author(s):  
Heidi Tanskanen ◽  
Anders Granström ◽  
Markku Larjavaara ◽  
Pasi Puttonen

Fire behaviour characteristics were studied in managed Pinus sylvestris L. and Picea abies L. Karst stands in a series of field burning experiments. Stand characteristics, surface fuel moisture content, mid-flame wind speed, rates of spread, flame heights, and torching were recorded. The Canadian Forest Fire Weather Index System (FWI System) and Finnish Fire Risk Index (FFI) were used to evaluate burning conditions and analyse the observed fire behaviour. Mid-flame wind speed was a good predictor (R2 = 0.96 for exponential curve) of the fire spread rates. Torching formed the strongest correlation with the height of the dead branch limit. An increase in predicted fire weather hazard from FWI 4 to FWI 20 (FWI = the FWI code of the FWI System) increased burn coverage remarkably in 15–45-year-old Pinus stands and to a lesser extent in Pinus and Picea clear-cuts, but did not affect 40–60-year-old Picea stands. The FFI was unable to predict burn coverage or any other fire behaviour characteristics.


2000 ◽  
Vol 30 (6) ◽  
pp. 889-899 ◽  
Author(s):  
Paulo M Fernandes ◽  
Wendy R Catchpole ◽  
Francisco C Rego

Fire behaviour modelling has been based primarily on experiments involving the measurement of a certain number of fires, where each variable is represented by an average value per fire. The main objective of this study was to examine if data collected from a microplot sampling design could be used to derive meaningful fire behaviour models. Three burns were conducted in low shrubland of Erica umbellata Loefl., and Chamaespartium tridentatum (L.) P. Gibbs in northeastern Portugal. Wind speed and aerial dead fuel moisture content varied from 5 to 27 km/h and from 14 to 21%, respectively. Rate of spread and flame length ranged from 0.3 to 14.1 m/min and from 0.2 to 3.1 m, respectively. Rate of fire spread could be described effectively in terms of an empirical model with wind speed and fuel height as independent variables. The coefficients that describe the effects of wind speed and fuel height on fire propagation were consistent with published values for similar fuel types. Flame length was strongly related to Byram's fireline intensity. Microplot sampling is not free from methodological problems, which are discussed, but can be effectively used in field studies of fire behaviour.


Sign in / Sign up

Export Citation Format

Share Document