Influence of grazing frequency and intensity on tiller appearance and death rates of Lolium perenne L. under subtropical conditions

1997 ◽  
Vol 48 (3) ◽  
pp. 337 ◽  
Author(s):  
F. R. McKenzie

Use of Lolium perenne (perennial ryegrass) in subtropical environments has been limited by its lack of persistence, possibly resulting from poor grazing management. Perennial ryegrass tiller appearance rates (TAR) and tiller death rates (TDR) were monitored under sheep grazing for 2 years. There was a tillering ‘flush’ during the cool-season months, relative to summer. This flush was highest for spring, with a minor trough in winter, and was associated with high TAR and low TDR for these periods. Summer was characterised by high TDR and low TAR. Seasonal patterns of tillering and death were largely unaffected by grazing, although the magnitude of TAR and TDR was manipulated by grazing within a given season. Frequent intense grazing initially produced high TAR, but these were not sustained. Frequent intense grazing resulted in the highest TDR relative to other treatments. Infrequent grazing, irrespective of intensity, resulted in the lowest TDR, particularly during summer, and should be considered by managers to enhance persistence of perennial ryegrass in the subtropics.


1996 ◽  
Vol 47 (6) ◽  
pp. 975 ◽  
Author(s):  
FR McKenzie

Lolium perenne L. (perennial ryegrass) exhibits poor persistence in subtropical environments. Grazing management may enhance the vigour and hence persistence of this species. Perennial ryegrass was subjected to various grazing treatments, and its vigour, indexed by etiolated growth, was evaluated over 2 years. Pasture and individual tiller vigour were monitored under 5 combinations of grazing frequency and intensity, applied rotationally, and 1 treatment of continuous grazing. The vigour of infrequently grazed plots was greater than that of frequently or continuously grazed plots; however, grazing intensity did not influence vigour. Seasonally, vigour declined during mid (December and .January) to late (February and March) summer of the establishment year and from early summer (October) to autumn (May) during the second year. Poor vigour in frequently grazed plots was associated with low growth reserves rather than a lack of active tiller growth points. Towards the end of the second year, however, a lack of active tiller growth points also limited vigour in frequently grazed plots. Tillers from infrequently grazed plots (regardless of grazing intensity) had greater vigour than tillers from the frequently grazed plots. To enhance the vigour of perennial ryegrass in subtropical environments, the frequency of grazing should be reduced, particularly in summer.



2000 ◽  
Vol 40 (2) ◽  
pp. 207 ◽  
Author(s):  
J. F. Graham ◽  
T. Prance ◽  
R. P. Thompson ◽  
D. Borg ◽  
P. Ball ◽  
...  

The effect of various grazing management treatments on newly sown and degraded perennial ryegrass pastures was studied at 6 different locations in the temperate high rainfall zone of southern Australia, as part of the Temperate Pasture Sustainability Key Program. The sites were located at Hamilton (2 sites, 1 grazed by cattle, 1 grazed by sheep) and Cavendish, western Victoria, Victor Harbor (Delamere), South Australia, and Ross and Parattah in Tasmania. Grazing management treatments significantly influenced the ryegrass mass and persistence of the pasture, but effects were not always consistent across sites. Autumn closure increased the perennial ryegrass content at Cavendish and Ross, as did the winter and summer closures at Ross. Spring closure increased the perennialryegrass content at Hamilton, Cavendish and Ross, but decreased it at Parattah, as did the summer closures at Parattah and Delamere. Fodder conservation decreased the ryegrass only at Parattah. At the Hamilton sheep site, and at Ross, mob stocking increased the ryegrass content, as did increased superphosphate treatments at Hamilton. Rotational grazing at Cavendish and Delamere increased the ryegrass content, as did the late spring or a late summer closure with a short autumn deferment at Cavendish and Ross, but both these treatments decreased ryegrass at Parattah. The treatments that had a negative effect at Parattah may have had a positive effect on cocksfoot at that site, creating competition for, and decreasing the ryegrass content. At most sites, treatments that included some spelling during spring to foster seed shedding, and spelling again in the following autumn to encourage germination seem to have been of benefit to the perennial ryegrass.



2021 ◽  
Vol 17 ◽  
Author(s):  
Wendy Griffiths ◽  
Mike Dodd ◽  
Barbara Kuhn-Sherlock ◽  
David Chapman

In parts of the upper North Island, farmers frequently report perennial ryegrass (Lolium perenne L.) pastures failing within 3 or 4 years post-sowing. This appears to be related to interactions between several factors: climatic (drier, hotter summers), biotic (insect pest), soil (texture, water-holding capacity) and grazing management factors that vary spatially and temporally. The efficacy of three management interventions for recovering ryegrass populations and production in runout pasture was assessed in an experiment initiated in 2018/19 in central Waikato. Treatments were a long-spring rotation (LSR), a longer grazing deferral during late spring and summer (pasture deferral, PD) and under-sowing with perennial ryegrass (US), each applied to pastures of four ryegrass cultivars. In the year after the treatments were implemented, the yield of ryegrass in PD was 2.4 t DM/ha greater than for the control (7-year-old pasture), and ryegrass tiller populations initially doubled but later declined. Yields in US and LSR were intermediate but not significantly different from the control. Ground score changes responded more positively to PD compared with the other treatments. Relative to the baseline prior to initiation of the study, tiller populations increased for PD and US but declined for control and LSR. There were no interactions between management treatment and cultivar for any of the variables measured. Pasture deferral shows promise as an intervention for recovering failing ryegrass pastures through natural reseeding. However, the longevity of the benefits observed here has yet to be determined.



2000 ◽  
Vol 53 ◽  
pp. 277-283 ◽  
Author(s):  
M.P. Finlayson ◽  
F. Dastgheib

The tolerance of browntop (Agrostis capillaris L) perennial ryegrass (Lolium perenne L) Chewings fescue (Festuca nigrescens Lam) and annual poa (Poa annua L) to twelve herbicides with and without two organosilicone surfactants (Silwet L77 and Silwet S800) were assessed Annual poa was controlled by haloxyfop and clethodim plus S800 Browntop was highly tolerant to chlorsulfuron and metsulfuron and Chewings fescue to haloxyfop fluazifop clethodim and sethoxydim Organosilicone surfactants affected the tolerance of some species to certain herbicides For example Silwet L77 reduced the tolerance of annual poa to glyphosate but S800 increased the tolerance of perennial ryegrass to terbuthylazine The results have implications for the management of cool season turf



1993 ◽  
Vol 120 (3) ◽  
pp. 301-310 ◽  
Author(s):  
J. L. Brock ◽  
R. H. Fletcher

SUMMARYThe morphology of independent plants of perennial ryegrass (Lolium perenne L.) in mixed swards under intensive sheep grazing was studied at Palmerston North, New Zealand in 1988/89. Intact plants of two cultivars, ‘Grasslands Nui’ and ‘Grasslands Ariki’, were sampled from pastures under rotational grazing, set stocking, and a combination of both systems, every 2 months for 16 months, by taking turves (250 × 250 mm) and washing out the plants. Characters measured for each plant were: number of flower heads, leaves and tillers; basal stem and internode stolon length; flower head, leaf blade, leaf sheath and stolon dry weight (DW). Additional pasture data on tiller density and dispersion and herbage DW to ground level were also collected.Perennial rye grass exhibited a strong clonal growth pattern similar to that of white clover (Trifolium repens L.) but with a better balance between growth at the apex and death of old basal stem. Release of branch stolons to form new plants was regular, which maintained population stability. Formation of internode (I) stolon appeared to be a response of heavily shaded tillers for survival by elevation of the growing point to a more favourable position. The total DW of ryegrass stolon in pastures was greater than that of the companion white clover.There was little seasonal variation in number of tillers or basal (B) stem length per plant. During the reproductive period (late spring/early summer) plants were heavier and had more leaves and internode stolon than at other times of the year. Grazing management had little effect on plant structure, but plants under rotational grazing had 75% greater DW, less basal stem and reduced probability of internode stolon formation than plants under set stocking. Nui plants had heavier but fewer tillers than Ariki did, resulting in little difference in plant DW. Ariki had fewer single-tiller plants and a higher proportion of multiple-tiller (> 7) plants than Nui had. The structure of the populations was not affected by season, management or cultivar and remained stable throughout the year, with a log-normal distribution of plant size. Because of the uniformity of plant structure, plant density in pastures paralleled tiller density, averaging 1900, 3360 and 2330 plants/m2 for rotationally grazed, set stocked and combined grazing treatments respectively.In view of the strong influence that grazing management can have on ryegrass performance and persistence in pastures, the lack of response at the level of plant and population structure to grazing management suggests that some other level of organization within the ecology of the pasture is of greater importance.



Author(s):  
C. Matthew ◽  
S.J. Quilter ◽  
C.J. Korte ◽  
A.C.P. Chu ◽  
A.D. Mackay

In a pot trial to investigate stolen formation in perennial ryegrass (Lolium perenne L.). 4 genotypes of ryegrass tested all formed stolons. After burial with approximately 30 mm soil in August, cutting and burial, or cutting alone, stolen numbers in November were 18.8 and 3 (SED 3) per plant, respectively. In a grazed ryegrass sward stolen lengths were measured at intervals between May 1987 and April 1988, and for hard and lax grazed plots respectively, were 58 and 96 m/m2 in May, increased to 137 and 164 m/m2 in December, then declined to 47 and 74 ml m2 in April 1998. Active stolon formation in the field began when tillers were buried by earthworm activity and stock trampling in winter. It appears that stolen formation in ryegrass is a response to a seasonal cycle of burial similar to that for white clover. Studies of tagged tillers indicated a pattern of sward renewal in early summer by rapid production of large numbers of tillers from stolons at the base of dying flowering tillers. Other research results suggest that this pattern of sward renewal in perennial ryegrass may be widespread. Implications for grazing management are briefly discussed. Keywords: tiller appearnace rate, perennation, carbohydrate, perennial ryegrass, stolen formation



1996 ◽  
Vol 126 (1) ◽  
pp. 37-51 ◽  
Author(s):  
J. L. Brock ◽  
D. E. Hume ◽  
R. H. Fletcher

SUMMARYThe morphology of independent plants of ‘Grasslands Ruanui’ perennial ryegrass (Lolium perenne L.) and three cultivars of cocksfoot (Dactylis glomerata L.) (‘Grasslands Apanui’, ‘Grasslands Kara’ and ‘Grasslands Wana’) in mixed pastures under intensive sheep grazing was studied at Palmerston North, New Zealand during 1991/92.Both perennial ryegrass and cocksfoot exhibited a similar pattern of clonal growth and population structure. Distribution of plants among various orders of branching showed a relatively stable pattern through most of the year except in spring, when stem decay and plant fragmentation exceeded apical growth and regeneration, causing an increase in the proportion of small plants and a corresponding decrease of larger plants. This pattern was similar to that previously reported for white clover (Trifolium repens L.). Nevertheless, seasonal variation in plant structure (number of leaves, tillers and stems per plant) was small, but variation in organ size (DW or length) was greater. Stolon formation through elongation of internodes occurred throughout the year, but was associated primarily with flowering.Grazing management caused no differences in plant structure between species or among the cocksfoot cultivars, but did affect the size of organs, and hence plants. Cocksfoot plants were 50–60% heavier than perennial ryegrass under rotational grazing. Under set stocking, only perennial ryegrass and Wana cocksfoot exhibited sufficient phenotypic plasticity to survive, both Kara and Apanui cocksfoot failed to persist. The only consistent difference between the species was greater flowering in perennial ryegrass than in cocksfoot, in both the proportion of plants flowering, and the number of flowering tillers per plant. Both species produced stolons throughout the year, although perennial ryegrass and Wana cocksfoot had a higher proportion of plants with stolons than Apanui and Kara cocksfoot. Length and DW of stolons per plant were similar in both species.As there was little variation in plant structure and plant density, length of stolons per unit area tended to parallel seasonal changes in pasture tiller density. The role of grazing management in the survival of tillers and plants, and subsequent performance of grass species in pastures is discussed.



2011 ◽  
Vol 60 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Anita Jakab ◽  
János Kátai ◽  
Magdolna Tállai ◽  
Andrea Balláné Kovács

A tenyészedényes kísérletünket a DE AGTC MÉK Agrokémiai és Talajtani Intézet tenyészházában állítottuk be 2010. május 27-én. A kísérletben Debrecen-Látókép környékéről származó mészlepedékes csernozjom vályogtalajt alkalmaztunk, amely az alábbi jellemzőkkel rendelkezett: KA: 37,5; leiszapolható rész: 51%; pH(KCl): 5,5; pH(H2O): 6,6; Hu%: 2,8; AL-P2O5: 140 mg·kg-1; AL-K2O: 316,3 mg·kg-1. Az adatok alapján a kísérleti talaj gyengén savanyú, vályog kötöttségű, közepes nitrogén- és foszfor-, valamint jó kálium-ellátottsággal rendelkezett. A kísérletben kontroll-, műtrágya-, valamint szalmakezelést alkalmaztunk, melyeket bizonyos kombinációkban három különböző baktériumkészítménnyel (Bactofil A, EM-1, Microbion UNC) egészítettünk ki. A kísérletet három ismétlésben véletlenblokk elrendezésben állítottuk be. A tesztnövény angolperje (Lolium perenneL.) volt. A kísérlet kezdetétől számított 8. héten a talaj-, valamint a növényminták begyűjtésére került sor. Meghatároztuk a növényminták száraztömegét, a növény foszfor- és káliumtartalmát, valamint a talajminták nitrát-, valamint AL-oldható foszfor- és káliumtartalmát. Eredményeink alapján főbb megállapításaink a következők: – Az angolperje száraztömegét a műtrágyakezelés szignifikánsan növelte. A hatás a tápelem-ellátottság javulásával magyarázható. – A növény foszforkoncentrációja a műtrágyázás következtében csökkent, amelyet a hígulási effektussal magyarázhatunk. – A növény káliumkoncentrációját a műtrágya-, valamint a műtrágya+baktériumtrágya kezelések szignifikánsan serkentették. – A talaj nitráttartalma szignifikánsan növekedett a műtrágyakezelés kivételével minden kezelésben. – A talaj AL-P2O5-tartalma az NPK-műtrágyázás és az EM-1 kezelés következtében statisztikailag igazolható mértékben megnövekedett, míg az AL-K2O-tartalom kizárólag a szalmakezelés hatására nőtt. A baktériumkészítmények önmagukban alkalmazva általában nem eredményeztek jelentős változást a vizsgált paraméterekben, azonban a készítmények szerves/ásványi anyagokkal kombinált adagolása esetében különböző mértékben befolyásolták a vizsgált mutatókat.



Author(s):  
M Gonzalez Yanez ◽  
R Mcginn ◽  
D H Anderson ◽  
A R Henderson ◽  
P Phillips

It Is claimed that the use of the correct enzyme system as an additive on grass silage will satisfactorily control the fermentation and reduce the cell-wall fibre content, thus preserving the nutrients In the silage and aiding their utilisation by the animal (Henderson and McDonald, 1977; Huhtanen et al, 1985; Raurama et al, 1987; Chamberlain and Robertson, 1989; Gordon, 1989;).The aim of the present experiment was to assess the effect of biological additives, enzymes or a combination of enzymes with an Inoculum of lactic acid bacteria, on the composition of silage and on its nutritive value when offered to store lambs as the sole constituent of their diet.On 1st June 1988, first cut perennial ryegrass (Lolium perenne L) at pre-ear emergence was ensiled direct cut untreated (U), treated with a commercial enzyme (E) or with a commercial inoculum of lactic acid bacteria with enzymes (I) in 6t capacity bunker silos. The grass was cut with a mower and lifted with a New Holland precision chop forage harvester. The additives were pumped onto the grass using a dribble bar sited over the pick-up drum.





Sign in / Sign up

Export Citation Format

Share Document