Characters contributing to high yield in Currawong, an Australian winter wheat

1998 ◽  
Vol 49 (5) ◽  
pp. 853 ◽  
Author(s):  
L. D. J. Penrose ◽  
K. Walsh ◽  
K. Clark

This study investigated characters that contribute to high grain yield in the recently released Australian winter wheat, cv. Currawong. Currawong was released as a feed grade wheat for south-central New South Wales, with a 10% yield advantage over the highest yielding milling wheat with winter habit, Rosella. When expressed as a percentage of the grain yield of Rosella, Currawong was found to perform best at sites with low soil pH and high grain yield. These sites corresponded to the wetter eastern margin of the wheatbelt in south-central New South Wales. While part of the yield advantage of Currawong is due to its tolerance of soil acidity, there remains an ability to yield particularly well in environments conducive to high yield. In yield component studies that were conducted over 2 seasons at Temora, the yield advantage of Currawong appeared to be associated with its grainfilling characters. Currawong had a more rapid rate of grainfill, and/or a longer duration of grainfilling than other high-yielding winter wheats, leading to significantly heavier grain. From a plant breeding perspective, the high yield of Currawong is significant for demonstrating rapid genetic gain for yield in Australian winter wheats. The yield of Currawong also demonstrates the possibility of combining high grain yield with the Sr26 stem rust resistance. Characters that confer high yield in Currawong may be of limited benefit in environments where drought stress limits the duration of grainfilling in wheat.

2009 ◽  
Vol 49 (10) ◽  
pp. 769 ◽  
Author(s):  
K. G. McMullen ◽  
J. M. Virgona

In southern New South Wales, Australia, grazing wheat during the vegetative and early reproductive growth stages (typically during winter) can provide a valuable contribution of high quality feed during a period of low pasture growth. This paper reports results from a series of experiments investigating the agronomic management of grazed wheats in southern NSW. The effect of sowing date and grazing on dry matter production and subsequent grain yield of a range of wheat cultivars was measured in five experiments in 2004 and 2005. In all experiments, results were compared with ungrazed spring wheat (cv. Diamondbird). Grain yield of the best winter cultivar was either the same or significantly greater than the spring cultivar in each of the five experiments. Within the winter wheat cultivars, there was significant variation in grain yield, protein content and screenings, depending on site and year with the cultivar Marombi out-yielding all others. Interestingly, this cultivar usually had the least dry matter post-grazing but the greatest dry matter by anthesis of the winter wheats. Generally, if sowing of the winter wheat was delayed, then the effects on yield were small or non-existent. The results are discussed with respect to the benefits of incorporating grazing cereals into cropping programs in the medium rainfall zone of southern Australia.


1968 ◽  
Vol 8 (35) ◽  
pp. 731 ◽  
Author(s):  
PR Dann

Wheat (CV. Heron) was subjected to various clipping treatments at Yanco, New South Wales, in 1963 and 1964. Clipping of vegetative growth decreased straw and grain yields in both years, but the decline in yield was much greater in 1963 than in 1964. Weight per grain was the major grain yield component reduced by clipping. Highly significant correlation; were obtained between dry matter removed at clipping, weight per grain, and grain yield.


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


2003 ◽  
Vol 43 (1) ◽  
pp. 71 ◽  
Author(s):  
M. K. Conyers ◽  
C. L. Mullen ◽  
B. J. Scott ◽  
G. J. Poile ◽  
B. D. Braysher

The cost of buying, carting and spreading limestone, relative to the value of broadacre crops, makes investment in liming a questionable proposition for many farmers. The longer the beneficial effects of limestone persist, however, the more the investment in liming becomes economically favourable. We re-established previous lime trials with the aim of measuring the long-term effects of limestone on surface acidity (pH run-down), subsurface acidity (lime movement) and grain yield. The study made use of experiments where there was adequate early data on soil chemical properties and cereal yields. We report data from 6 trials located at 4 sites between Dubbo and Albury in New South Wales. The rate of surface soil (0–10 cm) pH decline after liming was proportional to the pH attained 1 year after liming. That is, the higher the pH achieved, the more rapid the rate of subsequent pH decline. Since yields (product removal) and nitrification (also acid producing) may both vary with pH, the post-liming pH acts as a surrogate for the productivity and acid-generating rate of the soil–plant system. The apparent lime loss rate of the surface soils ranged from the equivalent of nearly 500 kg limestone/ha.year at pH approaching 7, to almost zero at pH approaching 4. At commercial application rates of 2–2.5 t/ha, the movement of alkali below the layer of application was restricted. However, significant calcium (Ca) movement sometimes occurred to below 20 cm depth. At rates of limestone application exceeding the typical commercial rate of 2.5 t/ha, or at surface pH greater than about 5.5, alkali and Ca movement into acidic subsurface soil was clearly observed. It is therefore technically feasible to ameliorate subsurface soil acidity by applying heavy rates of limestone to the soil surface. However, the cost and risks of this option should be weighed against the use of acid-tolerant cultivars in combination with more moderate limestone rates worked into the surface soil.There was a positive residual benefit of limestone on cereal grain yield (either barley, wheat, triticale, or oats) at all sites in both the 1992 and 1993 seasons. While acid-tolerant cultivars were less lime responsive than acid-sensitive ones, the best yields were generally obtained using a combination of liming and acid-tolerant cultivars.The long-term residual benefits of limestone were shown to extend for beyond 8–12 years and indicate that liming should be profitable in the long term.


1992 ◽  
Vol 32 (4) ◽  
pp. 465 ◽  
Author(s):  
AD Doyle ◽  
RW Kingston

The effect of sowing rate (10-110 kg/ha) on the grain yield of barley (Hordeum vulgare L.) was determined from a total of 20 field experiments conducted in northern New South Wales from 1983 to 1986. Effects of sowing rate on kernel weight and grain protein percentage were also determined from 12 experiments conducted in 1985 and 1986. Two barley varieties were tested each year. In all years fallow plus winter rainfall was equal to or greater than average. Grain yield increased with higher sowing rates in most experiments, with the response curve reaching a plateau above 60-70 kg/ha. For 13 of the 40 variety x year combinations, grain yield fell at the highest sowing rates. Only in an experiment where lodging increased substantially with higher sowing rates was there a reduction in yield at a sowing rate of 60 kg/ha. The average sowing rate for which 5 kg grain was produced per kg of seed sown was 63 kg/ha. Grain protein percentage usually fell, and kernel weight invariably fell, with increasing sowing rate. Increasing sowing rates from the normal commercial rate of 35 kg/ha to a rate of 60 kg/ha typically increased grain yields by 100-400 kg/ha, decreased kernel weight by 0.4-2.0 mg, and decreased grain protein by up to 0.5 percentage points. In no case was the grain weight reduced to below malting specifications. It was concluded that sowing rates for barley in northern New South Wales should be increased to about 60 kg/ha.


1985 ◽  
Vol 25 (4) ◽  
pp. 922 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
RB Hinkley ◽  
JA Fisher

Twelve spring wheat cultivars were tested in southern New South Wales for their tolerances to the recommended rates and three times the recommended rates of trifluralin, pendimethalin, tri-allate and chlorsulfuron. Recommended rates of these herbicides did not affect the emergence or grain yield of any cultivar. However, differences between cultivars in their tolerances to trifluralin, pendimethalin and chlorsulfuron at three times the recommended rate were identified. The extent of the reduction in emergence and/or grain yield varied with herbicide and season, and there was also a herbicidexseason interaction. Durati, Songlen and Tincurrin were the most susceptible cultivars to trifluralin, and Teal was the most tolerant. Yield losses from trifluralin were more severe in 1979 than in 1980 or 1981. The differential between cultivars treated with pendimethalin was smaller and more variable; Tincurrin was the only cultivar with a yield reduction in more than one season. Durati, Songlen and Shortim were the only cultivars affected by chlorsulfuron. A reduction in crop emergence of a cultivar treated with trifluralin or pendimethalin did not correlate consistently with any grain yield loss, and reductions in emergence were always greater than yield loss.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.


2005 ◽  
Vol 45 (3) ◽  
pp. 269 ◽  
Author(s):  
D. F. Herridge ◽  
M. J. Robertson ◽  
B. Cocks ◽  
M. B. Peoples ◽  
J. F. Holland ◽  
...  

Apparent nodulation failures and associated low grain yields have been reported for commercial mungbean (Vigna radiata) crops in southern Queensland and northern New South Wales. We therefore conducted on-farm surveys of 40 commercial mungbean crops in the region in which symbiotic traits, i.e. nodulation and nitrogen fixation, and biomass and grain yield were monitored. Effects of bradyrhizobial inoculation and inoculation methods on mungbean and soybean (Glycine max) symbiosis and yield were determined in experiments at 3 sites in northern New South Wales. Thirty-four of the 35 mungbean crops assessed for nodulation were nodulated. The relationship between soil nitrate to a depth of 90 cm at sowing and mungbean nodulation was not significant. However, at low-to-moderate soil nitrate levels (<100 kg N/ha), the mean nodule score was 1.6, compared with 0.5 at high (>100 kg N/ha) soil nitrate levels. Soil nitrate had a negative effect on the percentage of mungbean nitrogen derived from nitrogen fixation (%Ndfa). Mean %Ndfa values for soil nitrate levels <50, >50–100 and >100 kg N/ha were 35, 22 and 19% respectively. Grain yields of the surveyed mungbean crops varied from 0.3 to 2.1 t/ha, and were correlated with shoot dry matter. Grain yield was not significantly correlated either with sowing soil nitrate, nodule score or %Ndfa. In the inoculation experiments, mungbean did not nodulate as well as soybean, producing about one-third the number of nodules. Both species responded to inoculation with increased nodulation, although data from one of the sites suggested that responses during early growth of mungbean were not maintained during pod-fill. Effects of inoculation on mungbean %Ndfa were marginal. Average increases were 9%, based on natural 15N abundance, and 6%, based on the ureide method. Soybean %Ndfa, on the other hand, responded strongly to inoculation, with increases of 56 (15N) and 77% (ureide). Inoculation increased mungbean crop N by an average of 10% and grain yield by 6%, compared with responses to fertiliser nitrogen of 31% (crop N) and 10% (grain yield). For soybean, inoculation increased crop nitrogen by 43% and grain yield by 7%, similar to responses to fertiliser nitrogen of 45 (crop N) and 5% (grain yield). These results suggest that inoculated mungbean was N-limited and that inoculation of mungbean using current technology may be somewhat ineffectual. We concluded that low nodulation and nitrogen fixation of commercial mungbean most likely results from the suppressive effects of nitrate and/or insufficient numbers of bradyrhizobia in the soil. When low symbiosis and low soil nitrate are combined, N is likely to limit crop growth, and potentially grain yield. Suggested strategies for improving mungbean nodulation and nitrogen fixation in the northern grains belt include selection of more symbiotically competent plant and bradyrhizobial genotypes and more effective utilisation of established soil populations of mungbean bradyrhizobia.


Sign in / Sign up

Export Citation Format

Share Document