scholarly journals Yield component variation in winter wheat grown under drought stress

2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield

2001 ◽  
Vol 81 (1) ◽  
pp. 7-16 ◽  
Author(s):  
D. R. Domitruk ◽  
B. L. Duggan ◽  
D. B. Fowler

Differences among cultivars in their response to changes in crop water availability are reflected in genotype–environment (GE) interactions for grain yield. With the recent expansion of the winter wheat production area in western Canada, it is important that plant breeders and agronomists have an understanding of the significance of GE interactions as they relate to regional adaptation of genotypes. Consequently, the objective of this study was to determine the phenotypic stability of recent high-yielding winter wheat genotypes grown under drought and low stress conditions on the Canadian prairies and to assess the effect that crop water status has on GE interactions. Eighteen field trials were conducted throughout Saskatchewan over a 3-yr period. Five hard red winter wheat genotypes were selected for evaluation in these trials on the basis of unique characteristics identified in earlier studies. Natural variation in weather among locations and years and irrigation produced a wide range in the timing and intensity of drought stress. The high yield potential of recent winter wheat selections was confirmed. A nonsignificant genotype-location effect meant that geographic subregions requiring specific adaptive traits could not be identified. In contrast, significant effects of years and genotype-year and location-year interactions indicated that annual differences in weather had a greater influence on relative genotype performance than weather differences among locations. Significant within-site genotypic variation for grain yield was observed only at high rainfall and irrigated sites, and the GE interaction was larger than the genotypic variance component when there were wide differences in environmental conditions. The GE interaction effect was not significant when only dryland sites were considered. A poor association between yield rank at the highly productive and drought-stressed sites was attributed to genotypic differences in yield potential and the effect of drought on the expression of yield potential. Joint regression, pairwise correlated response, stability, and convergence analyses were conducted in an effort to better interpret the practical importance of the GE interactions. A tendency for the genotype regression lines to converge below the range of grain yields expected in the region indicated that genotypes with the highest mean yield were widely adapted and that winter wheat breeders should select for high yield potential in low stress environments. However, the expression of grain yield potential was reduced enough to suggest that winter wheat yields in western Canada are likely to benefit from this “high” yield potential only under moderate and low stress conditions. Therefore, because there is a wide diversity of crop water conditions in this region, trial locations should also include targeted high stress environments to identify genotypes with high performance over a wide range of environments. Key words: Triticum aestivum L., drought stress, stability, regression analyses, grain yield


2012 ◽  
Vol 125 (7) ◽  
pp. 1473-1485 ◽  
Author(s):  
Dion Bennett ◽  
Matthew Reynolds ◽  
Daniel Mullan ◽  
Ali Izanloo ◽  
Haydn Kuchel ◽  
...  

2013 ◽  
Vol 93 (6) ◽  
pp. 1257-1259 ◽  
Author(s):  
D. B. Fowler

Fowler, D. B. 2013. Swainson hard red winter wheat. Can. J. Plant Sci. 93: 1257–1259. Swainson is a medium tall, high-yielding, stem and leaf rust resistant winter wheat (Triticum aestivum L.) that is registered for production in western Canada. It is a hard red winter wheat cultivar that is eligible for grades of the Canada Western General Purpose (CWGP) wheat class, which was created in 2008 to encourage the development of cultivars to fill the high energy demands of the biofuel and livestock feed markets in western Canada. Its high yield potential has been particularly evident on dry land in Saskatchewan where its grain yield was 116% of CDC Buteo, the Canada Western Red Winter Wheat Class grain quality check cultivar, and 110% of Accipiter and 117% of CDC Falcon, the high-yielding check cultivars. High grain yield potential of low protein concentration grain and rust resistance make Swainson a good fit for the CWGP class.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atman ◽  
Irfan Suliansyah ◽  
Aswaldi Anwar ◽  
Syafrimen Yasin

Cultivation of true shallot seeds has the potential to be developed in Indonesia because apart from being able to reduce the cost of providing seeds, it also has higher productivity than shallot from tubers. This study aims to determine the appearance of true shallot seed varieties that have high yield potential in the highlands of West Sumatra. The study used a randomized complete block design (RCBD) with 4 treatments of true shallot seed varieties, namely, Trisula, Bima, Lokananta, and Sanren, with 6 replications. The results showed that except for the age of harvest and the number of tubers per hill, the treatment of various varieties of true shallot seeds showed a significant effect on all observed variables. Lokananta variety has better growth component, yield component, and yields compared to other varieties (Trisula, Bima, and Sanren). Cultivation of true shallot seeds in the highlands gives lower yields than in the adapted area (lowland), except for the Trisula variety. Lokananta variety is recommended for use in the highlands of West Sumatra.


2020 ◽  
Vol 18 (3) ◽  
pp. 175
Author(s):  
Jaenudin Kartahadimaja ◽  
Eka Erlinda Syuriani

Reduced productive rice fields to non-paddy fields, most possible extension of the nationalrice cultivation area to the suboptimal lands reaching ± 91.9 million ha. Technologypackages that can be applied include the use of new improved rice varieties through theassembling of varieties that have high yield potential, resistant to suboptimal soil stress. Theobjective of the research is to produce new superior rice varieties that are available invarious environments. The study used a split-plot design, as the main plot is an environmentconsisting of rice paddies and gogo, as a subplot is the genotype of rice. The treatment ineach environment is prepared using the Randomized Complete Block Design (RCBD). Thetreatment consisted of 10 new rice strains and four varieties as a comparison. Variablesobserved (1) plant height; (2) the maximum number of shoots; (3) number of productiveshoots; (4) long panicle; (5) the number of grains per panicle; (6) the amount of graincontent of each panicle; (7) the number of empty grains per panicle; (8) weight of 1000grains of grain; (9) grain yield of each clump; (10) grain yield per hectare. Data wereanalyzed by variance if there was a difference between mean, median treatment, followed byLsd test at 5% level. The adaptability and yield stability of each strain was determined basedon the value of the coefficient of diversity (KK) (Francis and Kenneberg, 1978) in Syukur etal., (2012). The results showed that seven new rice strains had adaptations both planted asupland rice and lowland rice, namely strains B3, B4, F2, F3, H1, H4, and L2.


1986 ◽  
Vol 37 (6) ◽  
pp. 573 ◽  
Author(s):  
E Fereres ◽  
C Gimenez ◽  
JM Fernandez

Field experiments were conducted between 1981 and 1983 at Cordoba, Spain, to evaluate the yield responses to drought of 53 sunflower genotypes. There was substantial variability among genotypes both in dryland yield and in yield potential, estimated as the yield under frequent irrigation. No association was found between yield potential and the drought susceptibility index, suggesting that drought resistance and high yield potential may be combined in improved sunflower cultivars. Water deficits reduced harvest index (HI) in all genotypes but the decrease in HI varied among genotypes. Excellent correlations were found between HI and grain yield under dryland conditions for genotypes with similar length of season. The reduction in HI due to water deficits was mostly due to adjustments in seed number with less variation in individual seed weight. In turn, the reduction in seed number was due to a combination of reduced head size and of the area having viable seeds. The length of season of the genotypes apparently affected the yield component adjustments in response to water deficits.


2011 ◽  
Vol 91 (2) ◽  
pp. 363-365 ◽  
Author(s):  
D. B. Fowler

Fowler, D. B. 2011. Accipiter hard red winter wheat. Can. J. Plant Sci. 91: 363–365. Accipiter is an intermediate height, high-yielding, winter wheat (Triticum aestivum L.) cultivar with good stem and moderate leaf rust resistance that is registered for production in western Canada. It is a hard red winter wheat cultivar that is eligible for grades of the Canada Western General Purpose (CWGP) wheat class. The CWGP class was created in 2007 to encourage the development of cultivars to fill the high energy demands of the biofuel and livestock feed markets in western Canada. The grain yield of Accipiter was 114% of the Canada Western Red Winter Wheat class grain quality check cultivar, CDC Osprey, and 103% of the high-yielding check, CDC Falcon. High grain yield potential combined with good agronomic and disease packages make Accipiter a good fit for the CWGP class.


2013 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
MA Mannan ◽  
MSU Bhuiya ◽  
MIM Akhand ◽  
MM Rana

The experiment was conducted at the Bangladesh Rice Research Institute Farm, Gazipur, in boro season to determine the optimum planting date and to select the varieties having high yield potential. Traditional aromatic photoperiod sensitive fine rice varieties; Kalijira, Kataribhog, Chinigura and Badshabhog were transplanted from 10 December and continued up to 25 January, both in 2000 and 2001 years, at an interval of 15 days. Forty-day old seedlings were transplanted spaced at 20 cm x 20 cm. Results exhibited that plant tallness, number of tillers and dry matter increased with the advancement of planting dates. On the contrary, the number of panicles, grains panicle-1, panicle length, grain yield, straw yield and growth duration decreased with delaying of planting dates. The intermediate short stature plant type of Chinigura exhibited higher number of panicles (300-331 m-2) and comparatively heavier individual grain (12.25-12.31 g), consequently gave higher grain yield (2.79-3.53 t ha-1 ) planted with in December. However, in late planted situation in 10 January Kalijira exhibited higher number of panicles, grains panicle-1, resulted higher grain yield than the rest of the varieties. Thus, cultivation of traditional aromatic fine rice Chinigura and Kalijira have the potentiality to produced higher grain yield when planted in early December in Boro season. DOI: http://dx.doi.org/10.3329/jsf.v10i1.16275 J Sci Foundation, January-June 2012;10(1):20-28


1998 ◽  
Vol 49 (5) ◽  
pp. 853 ◽  
Author(s):  
L. D. J. Penrose ◽  
K. Walsh ◽  
K. Clark

This study investigated characters that contribute to high grain yield in the recently released Australian winter wheat, cv. Currawong. Currawong was released as a feed grade wheat for south-central New South Wales, with a 10% yield advantage over the highest yielding milling wheat with winter habit, Rosella. When expressed as a percentage of the grain yield of Rosella, Currawong was found to perform best at sites with low soil pH and high grain yield. These sites corresponded to the wetter eastern margin of the wheatbelt in south-central New South Wales. While part of the yield advantage of Currawong is due to its tolerance of soil acidity, there remains an ability to yield particularly well in environments conducive to high yield. In yield component studies that were conducted over 2 seasons at Temora, the yield advantage of Currawong appeared to be associated with its grainfilling characters. Currawong had a more rapid rate of grainfill, and/or a longer duration of grainfilling than other high-yielding winter wheats, leading to significantly heavier grain. From a plant breeding perspective, the high yield of Currawong is significant for demonstrating rapid genetic gain for yield in Australian winter wheats. The yield of Currawong also demonstrates the possibility of combining high grain yield with the Sr26 stem rust resistance. Characters that confer high yield in Currawong may be of limited benefit in environments where drought stress limits the duration of grainfilling in wheat.


Sign in / Sign up

Export Citation Format

Share Document