Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicum (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.) to five rates of applied phosphorus

1999 ◽  
Vol 50 (2) ◽  
pp. 223 ◽  
Author(s):  
J. K. Olsen ◽  
J. T. Schaefer ◽  
D. G. Edwards ◽  
M. N. Hunter ◽  
V. J. Galea ◽  
...  

The growth response of 2 vegetable crops to 5 rates of applied phosphorus (P)in the presence or absence of an existing network of extraradical mycorrhizalmycelium was determined in 2 greenhouse pot experiments (Expt 1, autumnwinter; Expt 2, summer autumn) using a low-P growth medium (6 or 5 mgNaHCO3-extractable P/kg for Expt 1 or 2,respectively). In both experiments, capsicum(Capsicum annuum L.) and tomato(Lycopersicon esculentum Mill.) plants were grown at 0(P1 ), 9.2 (P2), 27.5(P3 ), 82.5 (P4 ), or 248(P5) mg P/kg oven-dry soil (spot-placed at sowing)within a nylon mesh (pore size 44 µm). The mesh excluded roots from theoriginal sunflower (Helianthus annuus L.) host plants,to which either live (VAM+) or killed (VAM–) mycorrhizal[Glomus etunicatum Becker & Gerdemann andGlomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] inoculum was added at sowing. The mesh did allow fungal hyphae togrow into the growth medium contained by the mesh.Whereas VAM+ plants generally had higher P concentrations in indextissues than VAM– plants at low P rates, a concomitant increase in drymatter yield was restricted to the P1 rate. AtP1 in Expt 2, the increase in the dry weight of wholeplants as a result of VAM colonisation was as large as 91.7-fold and 17.9-foldfor capsicum and tomato, respectively. Root starch analysis indicated that thelower dry matter yields of VAM+ plants than of VAM– plants at≥P2 could be attributed to insufficient photosynthateproduction by VAM+ plants to meet the carbon (C) demand of both host andendophytes within the relatively low-light environment of the greenhouse(average daily solar irradiance of 8.4 MJ/m2 forExpt 1 and 13.4 MJ/m2 for Expt 2).The growth response of vegetable crops grown within the greenhouse fromcolonisation by an established mycorrhizal mycelium appears to depend on acritical balance of P and C supply; i.e. at P1, P wasmore limiting than C, and the increased uptake of P as a result ofcolonisation of plant roots by VAM resulted in a growth response. At higher Prates, C was more limiting than P due to low light in the greenhouse, and theadditional demand for photosynthate imposed by the endophytes on the hostresulted in a growth depression relative to non-mycorrhizal plants.

1996 ◽  
Vol 47 (5) ◽  
pp. 651 ◽  
Author(s):  
JK Olsen ◽  
JT Schaefer ◽  
MN Hunter ◽  
DG Edwards ◽  
VJ Galea ◽  
...  

This greenhouse study investigated the effects of the addition of vesicular-arbuscular mycorrhizal (VAM) inoculum (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe and Glomus etunicatum Becker & Gerdemann) on capsicum (Capsicum annuum L. cv. Target), sweet corn (Zea mays L. cv. Snosweet), and tomato (Lycopersicon esculentum Mill. cv. Floradade) grown in a low P sandy loam (6 mg NaHCO3-extractable P/kg) with 5 rates of P (0, 10.3, 30.9, 92.7, or 278 mg P/kg oven-dry soil; P1, P2, P3, P4, or P5, respectively) and 2 rates of N (50 or 200 mg N/L in irrigation solution; N1 or N2, respectively). The growth periods (from sowing to harvest) for the 3 crops were as follows: 27 August-22 November 1993 for capsicum, 26 August-29 October 1993 for sweet corn, 31 August-22 October 1993 for tomato. For VAM-inoculated capsicum at PI, the dry weight (10.03 g/plant) and mean P concentration in the 5 youngest mature leaves (0.14%) were greater (P < 0.05) than those for uninoculated plants (0.28 g/plant; 0.09% P); a high coefficient of variation necessitated the use of log, transformed data to show differences. At low P rates, dry weight of sweet corn (P1, P2) and tomato (P1) plants colonised with VAM did not differ (P > 0.05) from uncolonised plants, despite inoculated plants having higher P concentrations in index tissues. At intermediate P rates, dry weights of inoculated plants were lower (P < 0.05) than those of uninoculated plants of sweet corn at P3 (81.1 and 102.2 g/plant, respectively) and of tomato at both P2 (11.7 and 34.5 g/plant, respectively) and P3 (39.6 and 52.1 g/plant, respectively). For all 3 crops, a lack of VAM response at high P ( >P4) was related to a lower (P < 0.05) VAM colonisation. The percentage root length colonised by VAM at P5 was only 6.8, 19.6, and 2.4% of that measured at P1 in the case of capsicum, sweet corn, and tomato roots, respectively. Increasing N concentration in the irrigation solution from 50 to 200 mg/L increased (P < 0.05) VAM colonisation of sweet corn (from 28 8 to 36 2%), but had no effect on capsicum and tomato.


2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Mustofa Khoiri

This research aim to know the effect of wings of to growth and photosynthesis speed at red pepper crop. The result of the research indicates that wings of to red pepper crop from aspect morfologis haves an in with plant height and plane flattened dry weight, but at leaf wide, leaves, and effect leaf length wings of doesn't significan influence compared with control. From physiological aspect, wings of at red pepper crop influences value quantum yield, photochemical quenching, and non photochemical quenching, but at value Q max doesn't show real influence. In aspect ecophyisiologic, wings of triggering produce of prolin and ascorbic acid which significan. Inferential that red pepper Capsicum annuum L very responsive in process of adaptation to environmental change for example grasp in the form of low light intensity. The result of the research gives contribution as source of teaching material in biology learning. Kata kunci: Naungan, Capsicum annuum L, aspek ekofisiologis.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 832
Author(s):  
Monika Vidak ◽  
Boris Lazarević ◽  
Marko Petek ◽  
Jerko Gunjača ◽  
Zlatko Šatović ◽  
...  

Sweet pepper (Capsicum annuum L.) is one of the most important vegetable crops in the world because of the nutritional value of its fruits and its economic importance. Calcium (Ca) improves the quality of sweet pepper fruits, and the application of calcite nanoparticles in agricultural practice has a positive effect on the morphological, physiological, and physicochemical properties of the whole plant. The objectives of this study were to investigate the effect of commercial calcite nanoparticles on yield, chemical, physical, morphological, and multispectral properties of sweet pepper fruits using a combination of conventional and novel image-based nondestructive methods of fruit quality analysis. In the field trial, two sweet pepper cultivars, i.e., Šorokšari and Kurtovska kapija, were treated with commercial calcite nanoparticles (at a concentration of 3% and 5%, calcite-based foliar fertilizer (positive control), and water (negative control) three times during vegetation). Sweet pepper fruits were harvested at the time of technological and physiological maturity. Significant differences were observed between pepper cultivars as well as between harvests times. In general, application of calcite nanoparticles reduced yield and increased fruit firmness. However, different effects of calcite nanoparticles were observed on almost all properties depending on the cultivar. In Šorokšari, calcite nanoparticles and calcite-based foliar fertilizers significantly increased N, P, K, Mg, Fe, Zn, Mn, and Cu at technological maturity, as well as P, Ca, Mg, Fe, Zn, Mn, Cu, and N at physiological maturity. However, in Kurtovska kapija, the treatments increased only Ca at technological maturity and only P at physiological maturity. The effect of treatments on fruit morphological properties was observed only at the second harvest. In Šorokšari, calcite nanoparticles (3% and 5%) increased the fruit length, minimal circle area, and minimal circle radius, and it decreased the fruit width and convex hull compared to the positive and negative controls, respectively. In Kurtovska kapija, calcite nanoparticles increased the fruit width and convex hull compared to the controls. At physiological maturity, lower anthocyanin and chlorophyll indices were found in Kurtovska kapija in both treatments with calcite nanoparticles, while in Šorokšari, the opposite effects were observed.


2011 ◽  
Vol 1 (1) ◽  
pp. 36-42
Author(s):  
K.K. Chaudhary ◽  
R. K. Kaul

Chilli (Capsicum annuum L.) crop is highly susceptible for the root knot nematode Meloidogyne incognita and every year this nematode causes great loss to the crop. The present study investigated the cumulative effect of two biocontrol agents viz. Pasteuria penetrans and Paecilomyces lilacinus against M. incognita. Two doses of P. penetrans i.e. 50g/Kg and 100g/Kg infested soil were applied either alone or in combination with two doses of P. lilacinus i.e. 4g spore culture/Kg and 6g spore culture/Kg of soil. Application of P. penetrans with P. lilacinus resulted into relatively better improvement in various growth attributes of chilli when compared with the individual application. Amongst the various treatments tested combined application with the higher dose of both bioagents (i.e. 100g P. penetrans infested soil with 6g of P. lilacinus/Kg) showed maximum improvement in fresh and dry weight of shoot and root over the nematode check and it was almost at par with that of the absolute check. The combined application of both the bioagents at higher dose resulted in 139 and 84% increase in dry weight of shoot and root over the nematode check respectively. The combined application of both the bioagents was also observed to cause higher reduction in gall number and nematode population than their individual application except for the treatment having lower dose of the P. penetrans with P. lilacinus where reduction in both the parameters was observed to be at par with that of the either dose of P. penetrans or higher dose of P. lilacinus. Combined application with higher dose of P. penetrans and P. lilacinus showed maximum reduction of 62.6 and 82.2% in gall numbers and nematode population over the nematode check.


1973 ◽  
Vol 53 (4) ◽  
pp. 843-847 ◽  
Author(s):  
S. C. PHATAK ◽  
G. R. STEPHENSON

Growth-chamber studies were conducted to identify the light and temperature factors associated with metribuzin (4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)one) injury to tomatoes (Lycopersicon esculentum Mill.). Plants exposed to 4 days of low light (6,500 lx) were more susceptible to metribuzin injury than those grown in high light (22,000 lx). Injury to tomatoes was greatest under conditions of low light prior to and high light after application of metribuzin to the foliage. Every increase in temperature from 21 C days and 13 C nights, to 25 C days and 18 C nights, to 27 C days and 18 C nights resulted in increased metribuzin injury to tomato.


1984 ◽  
Vol 64 (1) ◽  
pp. 181-191 ◽  
Author(s):  
ANDRÉ GOSSELIN ◽  
FRANÇOIS-P. CHALIFOUR ◽  
MARC J. TRUDEL ◽  
GHISLAIN GENDRON

We measured the effects of five root temperatures (12, 18, 24, 30 and 36 °C) and five rates of nitrogen fertilization (0, 2.5, 7.5, 22.5 and 67.5 meq N∙L−1) on growth, development, nitrogen content and nitrate reductase activity of tomato plants (Lycopersicon esculentum Mill. ’Vendor’). The greatest root dry weight was obtained at 18 °C and 2.5 meq N∙L−1 and the highest shoot dry weight at 24 °C and 22.5 meq N∙L−1. Total fruit weight was maximum at 24 °C and 2.5 meq N∙L−1. High root temperatures and high levels of fertilization increased the number of aborted flowers and the nitrogen content of shoots, but reduced tomato yields. Nitrate reductase activity (NRA) was higher in leaves than in roots and with plants receiving 22.5 meq N∙L−1 as compared to 2.5 meq. NRA in roots decreased as temperature increased.Key words: Lycopersicon esculentum Mill., root zone temperature, nitrate reductase, nitrogen


1997 ◽  
Vol 75 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Xiuming Hao ◽  
Beverley A. Hale ◽  
Douglas P. Ormrod

Tomato (Lycopersicon esculentum Mill.) plants were exposed, in controlled environments with 2.7 kJ/(m2 ∙ day) background ultraviolet-B (UV-B) radiation from fluorescent and incandescent lamps, to ambient (380 μL ∙ L−1) or elevated (600 μL−1) CO2 combined with a total of 7.2 or 13.1 kJ/(m2 ∙ day) UV-B radiation to determine effects on growth and photosynthesis. Ten consecutive days of exposure to the higher level of UV-B significantly reduced total and stem dry weight, leaf area, and plant height compared with the lower level. Only leaf area and plant height were significantly reduced after 19 consecutive days of exposure. To investigate whether plants recover from UV-B damage, the UV-B exposures were halted for 3 days after 19 days of UV-B exposure and then restarted for a further 2 days. The largest reduction in plant growth was found after 3 days with no UV-B followed by 2 days of the higher level of UV-B. Plants did not recover from UV-B damage during the 3 days with background UV-B. Significant CO2xUV-B interactions were detected on stem dry weight after 10 consecutive days of the higher level of UV-B and on total dry weight, leaf dry weight, stem dry weight, and plant height after 3 days with no UV-B followed by 2 days of the higher level of UV-B. The higher dose of enhanced UV-B resulted in more severe damage at 600 μL ∙ L−1 CO2, than at ambient CO2. The higher level of UV-B did not affect the leaf net photosynthesis rate on a leaf area basis, although this UV-B level may have inhibited tomato growth through reducing the photosynthetic area. UV-absorbing compounds in leaves in the highest UV-B radiation level for 19 days were greater than for leaves with the lower dose. These UV-absorbing compounds in the higher UV-B dose diminished more than in the lower dose plants during the 3 days without UV-B. The UV-absorbing compounds maintained by plants exposed to the highest level of UV-B radiation may have protected plants from UV-B damage, particularly between 10 and 19 consecutive days of exposure. Key words: CO2, growth, Lycopersicon esculentum Mill., photosynthesis, tomato, ultraviolet-B radiation (UV-B), UV-absorbing compounds.


Sign in / Sign up

Export Citation Format

Share Document