Evaluation of an integrated hydrocarbon sensor array system for the detection of dissolved oil components in sea water and its potential application in seepage exploration

2010 ◽  
Vol 50 (2) ◽  
pp. 724
Author(s):  
Xiubin Qi ◽  
Emma Crooke ◽  
Andrew Ross ◽  
Charlotte Stalvies ◽  
Trevor Bastow ◽  
...  

Marine surveys for the detection of naturally seeping hydrocarbons require a wide range of complementary remote sensing and geochemical techniques in order to achieve reliable data interpretation and prediction. Compared with current geochemical techniques such as sniffers and sea bed head space gas analysis, oil-in-water hydrocarbon sensors can provide real-time chemical information. The use of these sensors, in combination with current methods, offers a potentially important aid in achieving an integrated approach. In this study, CSIRO Petroleum has constructed a hydrocarbon sensors array that is composed of three groups of sensors that target volatile mono-aromatic hydrocarbons, poly-aromatic hydrocarbons at low concentration and oil films, respectively. This configuration allows us to have a comprehensive map of hydrocarbon distribution in water samples in real time. The variety of response times, sensitivities and operating conditions of the sensing devices has been considered, in order to design a flow tank and develop suitable monitoring and control software for the array. Chemometric tools such as principle component analysis (PCA) are used for data analysis and prediction model creation.Results will be presented from the evaluation measurements carried out in three stages. These include: laboratory evaluation of the sensor array to the dissolved oil components of a series of crude oil samples in synthetic sea water; sensor responses to natural sea water samples; and, initial field studies during surveys in Australian sea waters. To our knowledge, there have been no previously recorded instances of using such a hydrocarbon sensor array for oil and gas exploration.

2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Guanghua Wang ◽  
Jordi Estevadeordal ◽  
Nirm Nirmalan ◽  
Sean P. Harper

Online line-of-sight (LOS) pyrometer is used on certain jet engines for diagnosis and control functions such as hot-blade detection, high-temperature limiting, and condition-based monitoring. Hot particulate bursts generated from jet engine combustor at certain running conditions lead to intermittent high-voltage signal outputs from the LOS pyrometer which is ultimately used by the onboard digital engine controller (DEC). To study the nature of hot particulates and enable LOS pyrometer functioning under burst conditions, a multicolor pyrometry (MCP) system was developed under DARPA funded program and tested on an aircraft jet engine. Soot particles generated as byproduct of combustion under certain conditions was identified as the root cause for the signal burst in a previous study. The apparent emissivity was then used to remove burst signals. In current study, the physics based filter with MCP algorithm using apparent emissivity was further extended to real-time engine control by removing burst signals at real time (1 MHz) and at engine DEC data rate. Simulink models are used to simulate the performances of the filter designs under engine normal and burst conditions. The results are compared with current LOS pyrometer results and show great advantage. The proposed model enables new LOS pyrometer design for improved engine control over wide range of operating conditions.


2004 ◽  
Vol 50 (12) ◽  
pp. 19-26 ◽  
Author(s):  
G. Rabinski ◽  
D. Thomas

The feasibility of applying dynamic imaging analysis technology to particle characterization has been evaluated for application in the water sector. A system has been developed which captures in-situ images of suspended particles in a flowing sample stream and analyzes these images in real time to determine particle size and concentration. The technology can measure samples having a wide range of particle sizes (∼1.5 to 1,000 μm equivalent circular diameter) and concentrations (<1 to >1 million/ml). The system also provides magnified images of particles for visual analysis of properties such as size, shape and grayscale level. There are no sample preparation requirements and statistically accurate results are produced in less than three minutes per sample. The overall system architecture is described. The major design challenges in developing a practical system include obtaining adequate contrast for the range of particle materials found in typical water samples and achieving this under operating conditions permitting an adequate sample processing rate for real time feedback of results. Performance of the instrument is reported in reference to industry accepted particle standards and applications as an analytical tool for the water industries are considered.


Author(s):  
Shivender Singh Saini ◽  
Abuzar Kabir ◽  
Ashok Kumar Malik ◽  
Avasarala Lakshmi Jagannadha Rao ◽  
Kenneth Furton

Fabric phase sorptive extraction (FPSE) combines the advanced material properties of sol–gel derived microextraction sorbents and the flexible and permeable fabric support to create a robust, simple and green sample preparation device. It simultaneously improves the extraction sensitivity, and the speed of the extraction by incorporating high volume of sponge-like porous sol–gel hybrid inorganic–organic sorbents into permeable fabric substrates that is capable of extracting target analytes directly from simple to complex aqueous sample matrices. For the first time, this technique was applied to the trace level determination of selected polycyclic aromatic hydrocarbons (PAHs) in environmental water samples using a non-polar sol–gel C18 coated FPSE media. Several extraction parameters were optimized to improve extraction efficiency and to achieve high detection sensitivity. Validation tests of spiked samples showed good linearity for four selected PAHs (R2 = 0.9983–0.9997) over a wide range of concentrations (0.010-10 ng/mL). Limits of detection (LODs) and quantification (LOQs) were measured at pg/mL levels, 0.1–1 pg/mL and 0.3–3 pg/mL, respectively. Inter- and intra-day precision tests showed variations of 1.1–4.1% for four selected PAHs. Average absolute recovery values were in the range of 88.1–90.5% surpassed the recovery prediction model, with relative standard deviations below 5%. The developed FPSE-HPLC-FLD protocol was finally applied to analyze 8 environmental water samples. Out of four selected PAHs, fluoranthene (Flu) and phenanthrene (Phen) were the most frequently detected in four samples, at concentration levels of 5.6–7.7 ng/mL and 4.1-11 ng/mL, respectively followed by anthracene (Anth) and pyrene (Pyr) in two samples. The newly developed FPSE-HPLC-FLD protocol is simple, green, fast and economical, with adequate sensitivity for trace levels of four selected PAHs and seems to be promising in routine monitoring of water quality and safety.


Author(s):  
Guanghua Wang ◽  
Jordi Estevadeordal ◽  
Sean P. Harper ◽  
Nirm Nirmalan

Online line-of-sight (LOS) pyrometer is used on certain jet engines for diagnosis and control functions such as hot-blade detection, high-temperature limiting, and condition-based monitoring. Hot particulate bursts generated from jet engine combustor at certain running conditions lead to intermittent high-voltage signal outputs from the LOS pyrometer which is ultimately used by the onboard Digital Engine Controller (DEC). To study the nature of hot particulates and enable LOS pyrometer functioning under burst conditions, a Multi-Color Pyrometry (MCP) system was developed under DARPA funded program and tested on an aircraft jet engine. Soot particles generated as by-product of combustion under certain conditions was identified as the root cause for the signal burst in a previous study. The apparent emissivity was then used to remove burst signals. In current study, the physics based filter with MCP algorithm using apparent emissivity was further extended to real-time engine control by removing burst signals at real time (1MHz) and at engine DEC data rate. Simulink models are used to simulate the performances of the filter designs under engine normal and burst conditions. The results are compared with current LOS pyrometer results and show great advantage. The proposed model enables new LOS pyrometer design for improved engine control over wide range of operating conditions.


2004 ◽  
Vol 70 (12) ◽  
pp. 7372-7377 ◽  
Author(s):  
Marilyn S. Smith ◽  
Richard K. Yang ◽  
Charles W. Knapp ◽  
Yafen Niu ◽  
Nicholas Peak ◽  
...  

ABSTRACT A new real-time PCR method is presented that detects and quantifies three tetracycline resistance (Tcr) genes [tet(O), tet(W), and tet(Q)] in mixed microbial communities resident in feedlot lagoon wastewater. Tcr gene real-time TaqMan primer-probe sets were developed and optimized to quantify the Tcr genes present in seven different cattle feedlot lagoons, to validate the method, and to assess whether resistance gene concentrations correlate with free-tetracycline levels in lagoon waters. The method proved to be sensitive across a wide range of gene concentrations and provided consistent and reproducible results from complex lagoon water samples. The log10 of the sum of the three resistance gene concentrations was correlated with free-tetracycline levels (r 2 = 0.50, P < 0.001; n = 18), with the geometric means of individual resistance concentrations ranging from 4- to 8.3-fold greater in lagoon samples with above-median tetracycline levels (>1.95 μg/liter by enzyme-linked immunosorbent assay techniques) than in below-median lagoon samples. Of the three Tcr genes tested, tet(W) and tet(Q) were more commonly found in lagoon water samples. Successful development of this real-time PCR assay will permit other studies quantifying Tcr gene numbers in environmental and other samples.


2012 ◽  
Vol 57 (No. 5) ◽  
pp. 224-232 ◽  
Author(s):  
M. Adamska ◽  
A. Leonska-Duniec ◽  
M. Sawczuk ◽  
A. Maciejewska ◽  
B. Skotarczak

Cryptosporidium parvum is a common intestinal protozoan parasite infecting humans and a wide range of animals, whose diagnostics present considerable difficulties. These arise from the exceptionally robust nature of the oocyst&rsquo;s walls, which necessitates more stringent treatments for disruption and recovery of DNA for analysis using molecular methods. In the case of water, which is the major source of Cryptosporidium oocysts, investigations concern the detection of the presence of the oocysts. Their concentration in water is very low, and moreover, many substances that may have significance as inhibitors of DNA amplification, are present in environmental water and stool. We have carried out trials in order to assess the effectiveness of recovery of C.&nbsp;parvum oocysts, from spiked environmental and distilled water samples, filtrated and concentrated with the use of special laboratory equipment. Inactivation of inhibitors was carried out with use of bovine serum albumin (BSA) in PCR mixes at ten different concentrations. DNA extraction was carried out from stool samples spiked with C.&nbsp;parvum oocysts, concentrated using two methods, and unconcentrated. Nested PCR and a TaqMan nested real time PCR assay, targeting the 18S rRNA gene, was used to detect C. parvum DNA in spiked water and additionally in spiked stool samples. The obtained results showed that losses of C. parvum oocysts occur during the filtration and concentration of spiked water samples. The addition of small amounts of BSA (5&ndash;20 ng/&micro;l) to PCR and TaqMan PCR mixes increases the sensitivity of both methods, but a high concentration of BSA (100 ng/&micro;l and above) has an inhibiting effect on the polymerase reaction. The extraction of DNA from C. parvum oocysts from spiked stool samples preceded by concentration with PBS, ether and Percoll resulted in a higher copy number of the 18S rRNA gene. &nbsp;


Meccanica ◽  
2021 ◽  
Vol 56 (3) ◽  
pp. 549-567
Author(s):  
Luigi Teodosio ◽  
Giuseppe Alferi ◽  
Andrea Genovese ◽  
Flavio Farroni ◽  
Benedetto Mele ◽  
...  

AbstractThe characterization and reproduction of tyre behaviour for vehicle modelling is a topic of particular interest both for real-time driver in the loop simulations and for offline performance optimization algorithms. Since the accuracy of the tyre forces and moments can be achieved by the accurate physical modelling of all the phenomena concerning the tyre-road interaction, the link between the tyre thermal state and the tyre frictional performance turns into a crucial factor. An integrated numerical methodology, allowing to couple the full 3D CFD (Computational Fluid Dynamics) flux within the internal chamber of the tyre with an equivalent discrete 3D structure model, is proposed with the aim to completely represent the tyre thermodynamic convective behaviour in the steady-state operating conditions. 3D CFD model enables the evaluation of the internal distribution of the gas temperature and of the thermal powers exchanged at each sub-wall in detail. This allows to increase the reliability of the tyre thermodynamic modelling with a particular reference to the proper managing of the aero-thermal flow of the brake disc impact on the rim temperature and therefore on the internal gas dynamics in terms of temperature and pressure, being able to optimize the tyre overall dynamic performance in both warm-up and stabilized thermal conditions. The steady RANS (Reynolds Averaged Navier–Stokes) simulations have been performed employing the 3D CFD model in a wide range of angular velocities with the aim to calculate the convective thermal flux distributions upon rim and inner liner surfaces. The simulation results have been then exploited to derive the convective heat transfer coefficients per each sub domain to be employed within the real-time tyre physical thermal model, with the peculiar advantage of an enhanced model reliability for thermal characteristics. To validate the proposed methodology, the tyre thermal model outputs, in terms of temperatures of internal and external layers, have been validated towards the acquired ones within the specific routine performed on tyre force and moment test bench, confirming an excellent agreement with the experimental data in the entire range of operating conditions explored.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Dong Wang ◽  
Guoyu Lin ◽  
Weigong Zhang

Purpose – Wheel force transducers (WFTs) have performance characteristics that make them attractive for applications in endurance evaluation of road vehicles, ride and handling optimization, tire development and vehicle dynamics. As a WFT is mounted on the the driven wheel, the loads on the wheel and the outputs of WFTs are usually nonlinearly related. Thus, a real-time filter is needed to measure the true loads on the wheel. Design/methodology/approach – In this paper, a new nonlinear filtering algorithm utilizing quadrature Kalman filter (QKF) is proposed to track the actual loads in real time through establishing the specific observation equations with Singer models. Findings – The simulation results show that the accuracy and the rapidity of QKF outperforms the capability of the unscented Kalman filter (UKF). Then, the dynamic tests on the MTS testing platform give the comparisons between the real-time QKF and the wavelet transform, where the former has superior dynamic accuracy. Finally, the practical tests of shifting and braking on a real vehicle confirm the effectiveness of QKF, which further validates the proposed method fitting reality. Originality/value – In this paper, a newly improved algorithm with QKF for WFT has been proposed and tested experimentally. As the wheel loads are always time-varying and complex, introducing Gaussian noise in the outputs of the transducer, WFT-suitable Singer model and WFT measurement equation base on a QKF are established. The experiment results show that QKF has advanced performance than the traditional UKF. Also, the road wheel test bed produced by MTS has been exploited as the test platform to demonstrate the dynamic efficiency of the proposed real-time filter under various operating conditions for a wide range of loads. And, the practical tests with the real vehicle are accomplished to verify the value and effectiveness of the proposed method.


Author(s):  
Ernst Schneider ◽  
Stephan Staudacher ◽  
Bruno Schuermans ◽  
Haiwen Ye ◽  
Thiemo Meeuwissen

Premixed gas turbine combustors operated at very lean conditions are prone to thermoacoustic instabilities. Thermoacoustic instabilities have negative effects on the operability of the combustion chamber. The prevention of thermoacoustic instabilities is a major design goal of the gas turbine combustor system as well as its control system. An appropriate real-time model helps the design of effective control algorithms for the prevention of thermoacoustic instabilities. This paper presents a black-box real-time modelling approach for thermoacoustic instabilities simulation using a Gaussian-Process. A Gaussian Process is a stochastic process that can approximate arbitrary functions, similar to Neural Networks, but with the advantage that it can be implemented and tuned in a more straightforward manner since a theoretical framework exists for the optimization of the hyperparameters influencing the process. The Gaussian Process can be trained in a fast and straight-forward manner. The trained Gaussian Process has been proven to be very efficient numerically, which enables it to be used in a real-time simulation environment. The real-time gas turbine model is to be used in the development of control algorithms that allow for low-NOx and robust operation of the gas turbine in conjunction with low acoustic pulsation levels. Verification on a gas turbine demonstrated the high accuracy of this modeling approach for a wide range of operating conditions. Moreover, it was shown that a Gaussian Process trained with data of one engine correctly reproduced acoustic pulsation behaviour of another engine.


Sign in / Sign up

Export Citation Format

Share Document