Distribution of land plant markers in oils from the Gippsland Basin

2011 ◽  
Vol 51 (2) ◽  
pp. 740 ◽  
Author(s):  
Herbert Volk ◽  
Manzur Ahmed ◽  
Se Gong ◽  
Chris Boreham ◽  
Peter Tingate ◽  
...  

The Gippsland Basin is commonly cited as an outstanding example of a province dominated by oil from coal, and the most likely source rock for many of the oils is the Upper Cretaceous Latrobe Formation. Gippsland Basin oils contain abundant molecular fossils (biomarkers) for land plants, but to our knowledge there are no studies showing compelling evidence on whether the oils were predominantly generated from coal seams or from carbonaceous mudstones. In addition, the Latrobe Formation occurs in a range of maturity and facies expressions, and the degree to which other source rocks in the Gippsland Basin have also generated oil remains unclear. In this contribution, we will demonstrate how the distribution of land plant markers, in particular: di-, tri- and tetracyclic diterpanes; aromatic land plant markers such as retene and cadalene; pentacyclic land plant makers such as oleanane, lupane and their A-ring contracted counterparts; as well as, bicadinanes vary within a set of 23 oils from the Gippsland Basin. The variation with other aliphatic biomarkers and carbon stable isotopes is discussed, and source rocks with different floral assemblages in the Gippsland Basin are inferred.

1982 ◽  
Vol 22 (1) ◽  
pp. 164 ◽  
Author(s):  
B. M. Thomas

Many Australian oils are rich in paraffin waxes which are derived from the remains of terrestrial plants. Although the land-plant contribution to oils, particularly those found in a paralic or deltaic environment, is well established, opinion is divided on the ability of non-marine coaly sediments to generate and expel commercial quantities of oil. It appears that some coal measure sequences have generated mainly gas whilst others are the source of large oil accumulations. The composition of coals deposited in Australia has varied through geological time as a result of differences in climate, geological setting, depositional environment and stage of floral evolution. Consequently, most Australian pre-Jurassic coal measure sequences are deficient in exinite macerals and are therefore mainly gas-prone. In contrast, Jurassic to Tertiary coal-rich sequences often contain abundant exinite and may have substantial potential to generate oil in commercial quantities, as demonstrated by the well-known Gippsland Basin (Bass Strait) oilfields.A similar trend is observed worldwide, where, despite the extraordinary global abundance of Late Palaeozoic coals, only minor amounts of crude oil of land-plant origin are known to be associated with them. However, there appears to be a close relationship between the occurrence of waxy, land-plant-derived crudes and coaly sediments of Cretaceous and Tertiary age. This is thought to be a result of the dominance of conifers in swamp floras of these periods, together with the evolution of the angiosperms (flowering plants) in the Late Cretaceous.


1984 ◽  
Vol 24 (1) ◽  
pp. 91 ◽  
Author(s):  
J. G. Stainforth

Permit VIC/P19 lies palaeogeographically seaward of the main producing part of the Gippsland Basin. Deposition of the Latrobe Group commenced with volcanics and continental 'rift-stage' sediments during the Late Cretaceous. This phase was succeeded first by paludal sedimentation in the failed rift during the Campanian and Maastrichtian, and then by cyclic paralic sedimentation during the Paleocene and Eocene.Analysis of the hydrocarbons recovered during recent exploration of permit VIC/P19 shows that they were sourced from moderately mature coals and carbonaceous shales in the Campanian/-Maastrichtian paludal sequence.A maturation model that assumes elevated but decreasing heat flow, related to sea-floor spreading, produces an excellent fit to the observed maturity data and predicts a long history of hydrocarbon generation during the Tertiary. The maturity of the Upper Cretaceous source sequence depends more on the thickness of the overlying Lower Tertiary clastic Latrobe sediments than on the thickness of the Upper Tertiary carbonate wedge. The Late Tertiary phase of burial had relatively little effect on maturation because of its rapidity and the lower heat flow and higher thermal conductivities of the deeper sequence at the time. Overpressures in mature Upper Cretaceous source rocks, resulting from hydrocarbon generation, have driven pore fluids, including hydrocarbons, laterally up-dip into normally pressured reservoirs.The main oil province of the Gippsland Basin has a greater thickness of Lower Tertiary than has VIC/P19. As a result, source rocks are more mature there, and became wholly so by the end of deposition of the Latrobe Group. This facilitated charge of traps at the top of the Latrobe Group, which contain most of the oil and gas discovered to date in the Basin.


2005 ◽  
Vol 7 ◽  
pp. 9-12 ◽  
Author(s):  
Henrik I. Petersen

Although it was for many years believed that coals could not act as source rocks for commercial oil accumulations, it is today generally accepted that coals can indeed generate and expel commercial quantities of oil. While hydrocarbon generation from coals is less well understood than for marine and lacustrine source rocks, liquid hydrocarbon generation from coals and coaly source rocks is now known from many parts of the world, especially in the Australasian region (MacGregor 1994; Todd et al. 1997). Most of the known large oil accumulations derived from coaly source rocks have been generated from Cenozoic coals, such as in the Gippsland Basin (Australia), the Taranaki Basin (New Zealand), and the Kutei Basin (Indonesia). Permian and Jurassic coal-sourced oils are known from, respectively, the Cooper Basin (Australia) and the Danish North Sea, but in general only minor quantities of oil appear to be related to coals of Permian and Jurassic age. In contrast, Carboniferous coals are only associated with gas, as demonstrated for example by the large gas deposits in the southern North Sea and The Netherlands. Overall, the oil generation capacity of coals seems to increase from the Carboniferous to the Cenozoic. This suggests a relationship to the evolution of more complex higher land plants through time, such that the highly diversified Cenozoic plant communities in particular have the potential to produce oil-prone coals. In addition to this overall vegetational factor, the depositional conditions of the precursor mires influenced the generation potential. The various aspects of oil generation from coals have been the focus of research at the Geological Survey of Denmark and Greenland (GEUS) for several years, and recently a worldwide database consisting of more than 500 coals has been the subject of a detailed study that aims to describe the oil window and the generation potential of coals as a function of coal composition and age.


2016 ◽  
Author(s):  
Florencia Berruezo ◽  
Flavio S. J. de Souza ◽  
Pablo I. Picca ◽  
Sergio I. Nemirovsky ◽  
Leandro Martinez-Tosar ◽  
...  

AbstractMicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, and functional studies indicate that ancient miRNAs play key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plant miRNAs. Land plants are divided into bryophytes (liverworts, mosses), lycopods (clubmosses and spikemosses), monilophytes (ferns and horsetails), gymnosperms (cycads, conifers and allies) and angiosperms (flowering plants). Among these, the fern group occupies a key phylogenetic position, since it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.


2020 ◽  
Vol 71 (11) ◽  
pp. 3270-3278 ◽  
Author(s):  
Burkhard Becker ◽  
Xuehuan Feng ◽  
Yanbin Yin ◽  
Andreas Holzinger

Abstract The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.


1986 ◽  
Vol 123 (4) ◽  
pp. 445-454 ◽  
Author(s):  
J. Gray ◽  
J. N. Theron ◽  
A. J. Boucot

AbstractThe first occurrence of Early Paleozoic land plants is reported from South Africa. The plant remains are small, compact tetrahedral spore tetrads. They occur abundantly in the Soom Shale Member of the Cedarberg Formation, Table Mountain Group. Marine? phytoplankton (sphaeromorphs or leiospheres) occur with the spore tetrads in all samples. Rare chitinozoans are found in half the samples. Together with similar spore tetrads from the Paraná Basin (Gray et al. 1985) these are the first well-documented records of Ashgill and/or earlier Llandovery land plants from the Malvinokaffric Realm, and from the African continent south of Libya. These spore tetrads have botanical, evolutionary, and biogeographic significance. Their size in comparison with spore tetrads from stratigraphic sections throughout eastern North America, suggests that an earliest Llandovery age is more probable for the Soom Shale Member, although a latest Ordovician age cannot be discounted. The age of the brachiopods in the overlying Disa Siltstone Member has been in contention for over a decade. Both Ashgillian and Early Llandovery ages have been proposed. The age of the underlying Soom Shale Member based on plant spores and trilobites (earliest Llandovery or latest Ashgillian) suggests that the Disa Siltstone Member is also likely to be of Early Llandovery age, although the distance between the Soom Shale Member spore-bearing locality and rocks to the south yielding abundant invertebrate body fossils at one locality is great enough to permit diachroneity.


2000 ◽  
Vol 355 (1398) ◽  
pp. 769-793 ◽  
Author(s):  
Karen Sue Renzaglia ◽  
R. Joel Duff ◽  
Daniel L. Nickrent ◽  
David J. Garbary

As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage–filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non–synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophytes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http://www.science.siu.edu/landplants/index.html.


Sign in / Sign up

Export Citation Format

Share Document