scholarly journals Sequencing of small RNAs of the fern Pleopeltis minima (Polypodiaceae) offers insight into the evolution of the microRNA repertoire in land plants

2016 ◽  
Author(s):  
Florencia Berruezo ◽  
Flavio S. J. de Souza ◽  
Pablo I. Picca ◽  
Sergio I. Nemirovsky ◽  
Leandro Martinez-Tosar ◽  
...  

AbstractMicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, and functional studies indicate that ancient miRNAs play key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plant miRNAs. Land plants are divided into bryophytes (liverworts, mosses), lycopods (clubmosses and spikemosses), monilophytes (ferns and horsetails), gymnosperms (cycads, conifers and allies) and angiosperms (flowering plants). Among these, the fern group occupies a key phylogenetic position, since it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.

2017 ◽  
Author(s):  
Rohan Bythell-Douglas ◽  
Carl J. Rothfels ◽  
Dennis W.D. Stevenson ◽  
Sean W. Graham ◽  
Gane Ka-Shu Wong ◽  
...  

ABSTRACTStrigolactones (SLs) are a class of plant hormones that control many aspects of plant growth. The SL signalling mechanism is homologous to that of karrikins (KARs), smoke-derived compounds that stimulate seed germination. In angiosperms, the SL receptor is an α/β hydrolase known as DWARF14 (D14); its close homologue, KARRIKIN INSENSITIVE2 (KAI2), functions as a KAR receptor, and likely recognizes an uncharacterized, endogenous signal. Previous phylogenetic analyses have suggested that the KAI2 lineage is ancestral in land plants, and that canonical D14-type SL receptors only arose in seed plants; this is paradoxical, however, as non-vascular plants synthesize and respond to SLs. Here, we have used a combination of phylogenetic and structural approaches to re-assess the evolution of the D14/KAI2 family in land plants. We analyzed 339 members of the D14/KAI2 family from land plants and charophyte algae. Our phylogenetic analyses show that the divergence between the eu-KAI2 lineage and the DDK (D14/DLK2/KAI2) lineage that includes D14 occurred very early in land plant evolution. We identify characteristic structural features of D14 and KAI2 proteins, and use homology modelling to show that the earliest members of the DDK lineage structurally resemble KAI2, and not D14 proteins. Furthermore, we show that probable SL receptors in non-seed plants do not have D14-like structure. Our results suggest that SL perception has relatively relaxed structural requirements, and that the evolution from KAI2-like to D14-like protein structure in the DDK lineage may have been driven by interactions with protein partners, rather than being required for SL perception itself.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Jan-Hendrik Teune ◽  
Gerhard Steger

MicroRNAs (miRNA) are small regulatory, noncoding RNA molecules that are transcribed as primary miRNAs (pri-miRNA) from eukaryotic genomes. At least in plants, their regulatory activity is mediated through base-pairing with protein-coding messenger RNAs (mRNA) followed by mRNA degradation or translation repression. We describeNOVOMIR, a program for the identification of miRNA genes in plant genomes. It uses a series of filter steps and a statistical model to discriminate a pre-miRNA from other RNAs and does rely neither on prior knowledge of a miRNA target nor on comparative genomics. The sensitivity and specificity ofNOVOMIR for detection of premiRNAs fromArabidopsis thalianais ~0.83 and ~0.99, respectively. Plant pre-miRNAs are more heterogeneous with respect to size and structure than animal pre-miRNAs. Despite these difficulties,NOVOMIR is well suited to perform searches for pre-miRNAs on a genomic scale.NOVOMIR is written in Perl and relies on two additional, free programs for prediction of RNA secondary structure (RNALFOLD, RNASHAPES).


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 964
Author(s):  
Sarka Benesova ◽  
Mikael Kubista ◽  
Lukas Valihrach

MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol’s performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.


2021 ◽  
Author(s):  
Jaemyung Choi ◽  
David Bruce Lyons ◽  
Daniel Zilberman

Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically required for small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.


Author(s):  
Werner Schenkel ◽  
Achim Gathmann

Abstract Technologies based on RNA interference (RNAi) may be used in plant production in different contexts. With respect to applicable regulations, a major distinction is to be made between plants producing small RNA molecules due to modifications of the genome and topically applied plant protection products (PPPs) based on double-stranded RNA (dsRNA). The first group may be further divided into those using RNAi technology to achieve changes in the plant's metabolism and those where plant-produced RNA molecules are intended to impact other organisms that interact with the plant. For PPPs, relevant aspects are whether the product contains living organisms or only purified molecules. The intended use of the product is another relevant aspect with respect to regulation. It is expected that PPPs will be among the first products utilizing the RNAi mechanism in the European Union. This chapter discusses the regulation of modified RNAi plants and the regulation of PPPs utilizing RNAi mechanisms.


2020 ◽  
Vol 58 (1) ◽  
pp. 253-276 ◽  
Author(s):  
Dmitry Lapin ◽  
Deepak D. Bhandari ◽  
Jane E. Parker

The EDS1 family of structurally unique lipase-like proteins EDS1, SAG101, and PAD4 evolved in seed plants, on top of existing phytohormone and nucleotide-binding–leucine-rich-repeat (NLR) networks, to regulate immunity pathways against host-adapted biotrophic pathogens. Exclusive heterodimers between EDS1 and SAG101 or PAD4 create essential surfaces for resistance signaling. Phylogenomic information, together with functional studies in Arabidopsis and tobacco, identify a coevolved module between the EDS1–SAG101 heterodimer and coiled-coil (CC) HET-S and LOP-B (CCHELO) domain helper NLRs that is recruited by intracellular Toll-interleukin1-receptor (TIR) domain NLR receptors to confer host cell death and pathogen immunity. EDS1–PAD4 heterodimers have a different and broader activity in basal immunity that transcriptionally reinforces local and systemic defenses triggered by various NLRs. Here, we consider EDS1 family protein functions across seed plant lineages in the context of networking with receptor and helper NLRs and downstream resistance machineries. The different modes of action and pathway connectivities of EDS1 family members go some way to explaining their central role in biotic stress resilience.


2020 ◽  
Vol 71 (11) ◽  
pp. 3270-3278 ◽  
Author(s):  
Burkhard Becker ◽  
Xuehuan Feng ◽  
Yanbin Yin ◽  
Andreas Holzinger

Abstract The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.


Sign in / Sign up

Export Citation Format

Share Document