THE TECTONIC ELEMENTS OF THE PERTH BASIN

1972 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
D.K. Jones ◽  
G.R. Pearson

Birth and growth of the highly faulted Perth Basin was dominated by the Darling Fault which down-throws an essentially elongate sedimentary trough against a Precambrian Shield to the east. The Precambrian Northampton and Leeuwin Blocks restrict the basin to the north and the south. The Perth Basin embraces four major sub- basins separated by intra-basin uplifts. These sub-basins are the Dandaragan and Sunbury Troughs and the Abrolhos and Vlaming Sub-basins. Major intra-basin uplifts include the Beagle, Turtle Dove and Harvey Ridges, and the Edwards Island Block.Surface outcrop is representative of only a small part of the total stratigraphic column. Deposition of Ordovician - Silurian sediments in only the extreme north of the basin was followed by a long period of non-deposition. Sedimentation recommenced in the Lower Permian and continued with minor breaks throughout the Mesozoic and into the Tertiary. The Permian had a widespread distribution, as did the Triassic and Jurassic which attained maximum thickness in the Dandaragan Trough. A major intra-Neocomian unconformity developed in the Vlaming Sub-basin where up to 20,000 ft. of pre-unconformity Neocomian and 5,000 ft. of post-unconformity marine Cretaceous sediments were deposited. Tertiary sediments were deposited in both the Vlaming and Abrolhos Sub-basins.Limited movement on the Darling Fault in Permian and Lower Triassic times led to gentle basin downwarp. Renewed fault activity in the Upper Triassic resulted in rapid basin subsidence, and less violent fault activity continued through the Lower Jurassic. The most severe tectonic activity and basin subsidence, with local uplift, occurred in the Upper Jurassic and Neocomian, at which time graben-collapse of a mid-basin arch offshore from Perth formed the Rottnest Trench. This intra-Neocomian tectonism was probably associated with .sea floor spreading, the westerly drift of India from Australia, and the break up of Gondwanaland.This structural synthesis of the Perth Basin is largely derived from geophysical surveys and deep drilling carried out over the past twenty-three years on the present leases of West Australian Petroleum Pty. Limited (WAPET).


1971 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
K. J. Bird ◽  
W. F. Coleman ◽  
H. Crocker

Four-arm dipmeter interpretation has been integrated with other wireline logs, lithologic and palaeontologic data, and regional geology to arrive at a history of the deposition in a portion of the North Perth Basin.The Permian sediments were deposited in a moderate to low energy, paralic to marine environment. They were unconformably overlain by a thin transgressive Lower Triassic sand and deepwater marine shale. The Middle Triassic sediments were deposited as a regressive marine sequence under the influence of a strong southwesterly uplift, and culminated in piedmont talus deposits of Upper Triassic age.In the Lower Jurassic this area evolved through a flood-plain environment to a paralic environment with a northeast-southwest oriented coastline and a northern source area. During the Middle Jurassic gentle crustal movements, coupled with an increasingly active northern and eastern source area, resulted in several cycles of nearshore deposition, and finally a marine transgression.Subsequent violent tectonic uplift to the east in the Upper Jurassic produced massive first generation sands which were deposited in a mainly continental environment.



1974 ◽  
Vol 14 (1) ◽  
pp. 50 ◽  
Author(s):  
N. F. Exon

Isopach, structure contour, and palaeo-geological maps illustrate the geological development of the southern Taroom Trough and the lower part of the Surat Basin sequence.The meridional southern Taroom Trough, 50,000 km2 in area, is a southerly subsurface extension of the outcropping Bowen Basin. It is fault-bounded to the east and plunges northward. The maximum thickness of sedimentary fill increases northward from less than 400 m to 10,000 m, and consists of Lower Permian marine sediments, Upper Permian coal measures, Lower Triassic redbeds, and Middle Triassic stream sediments. The trough's present western margin is depositional, but the faulted eastern margin started to form in the Late Permian in the south and in the Early Triassic in the north; movement ceased in the Early Triassic in the south and in the Late Triassic in the north. Tectonic movements did not recur until Late Jurassic time.Late Triassic erosion preceded deposition of Surat Basin sediments. These sediments extended over ever wider areas, even the basal sands spreading far beyond the Taroom Trough. The fully-developed Surat Basin is 300,000 km2 in area, and contains up to 2500 m of dominantly continental Jurassic sediments and dominantly marine Lower Cretaceous sediments. Lower Jurassic stream sediments (the main petroleum producers of the basin) are thickest and coarsest above the Taroom Trough, suggesting steady subsidence and compaction of the trough sediments.By the Late Jurassic this compaction had virtually ceased, and epeirogenic uplift had given the basin its present shape, with the Mimosa Syncline (above the Taroom Trough) and the south-westerly-trending Dirranbandi Syncline (above a basement depression) being major structural features.Petroleum, which is probably derived from both Permian and Jurassic sources, is most abundant in the Lower Jurassic sandstone on either side of the Mimosa Syncline. Some aspects of the migration and trapping of Permian petroleum are discussed, and it is suggested that the Lower Jurassic Hutton Sandstone in the virtually unexplored Bollon area could be prospective.



1973 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
George E. Williams

Sediments of three major basins occur in the Simpson Desert region of central Australia:Cambro -Ordovician dolomites and sandstones, and Siluro- Devonian conglomerates, sandstones and shales, related to the Amadeus Basin:Permian conglomerates, sandstones, shales and coals of the Simpson Desert Sub-basin, the extensive eastern lobe of the Pedirka Basin:Mesozoic sandstones and shales of the Eromanga Basin.Principal petroleum exploration interest is presently directed toward the Permian sediments, which have many features in common with the petroleum producing Permian section of the neighbouring Cooper Basin.Lower Permian sediments known from drilling in the Simpson Desert Sub-basin comprise glaciofluvial conglomerates and sandstones overlain by fluvial and lacustrine sandstones, silt-stones, shales and coals. The maximum thickness encountered in wells is 1,479 ft (448 m) in Mokari 1.Recent seismic exploration 50 to 100 mi (80-160 km) west of Poeppel Corner in the deeper part of the Simpson Desert Sub-basin indicates that an additional sediment package up to 1,500 ft (350 m) thick occurs at depths of 6,500 to 7,500 ft (2,000-2,300 m) between Lower Permian and Lower Jurassic sections. This sediment package, nowhere penetrated by drilling, may be Middle to Upper Permian and/or Triassic in age. It is of great significance to petroleum exploration in the sub-basin and substantially upgrades the hydrocarbon prospects of the region.Permian sediments in the Simpson Desert Sub-basin thin by onlap, wedge out and stripping over the crests of anticlinal growth structures. Crestal sediments probably comprise mainly porous sandstones, grading off-structure into thicker sequences containing carbonaceous shales and coals. Such carbonaceous potential source rocks are probably best developed in the deepest part of the sub-basin, where Triassic cap rock may also be present. Two particularly promising drilling targets—the Colson Anticline and the East Colson Anticline—have been revealed by recent geophysical surveys in this portion of the sub-basin. Wells drilled on these structures may intersect Permo-Triassic sediments up to 2,200 + ft (670 in) thick which are comparable in age and type with producing sections in the Cooper Basin.



2021 ◽  
Author(s):  
Johnathon Osmond ◽  
Mark Mulrooney ◽  
Nora Holden ◽  
Elin Skurtveit ◽  
Jan Inge Faleide ◽  
...  

The maturation of geological CCS along the Norwegian Continental Shelf is ongoing in the Norwegian North Sea, however, more storage sites are needed to reach climate mitigation goals by 2050. In order to augment the Aurora site and expand CO2 storage in the northern Horda Platform, regional traps and seals must be assessed to better understand the area’s potential. Here, we leverage wellbore and seismic data to map storage aquifers, identify structural traps, and assess possible top and fault seals associated with Lower and Upper Jurassic storage complexes in four major fault blocks. With respect to trap and seal, our results maintain that both prospective intervals represent viable CO2 storage options in various locations of each fault block. Mapping, modeling, and formation pressure analyses indicate that top seals are present across the entire study area, and are sufficiently thick over the majority of structural traps. Across-fault juxtaposition seals are abundant, but dominate the Upper Jurassic storage complexes. Lower Jurassic aquifers, however, are often upthrown against Upper Jurassic aquifers, but apparent across fault pressure differentials and moderate to high shale gouge ratio values correlate, suggesting fault rock membrane seal presence. Zones of aquifer self-juxtaposition, however, are likely areas of poor seal along faults. Overall, our results provide added support that the northern Horda Platform represents a promising location for expanding CO2 storage in the North Sea, carrying the potential to become a future injection hub for CCS in northern Europe.



2015 ◽  
Vol 52 (12) ◽  
pp. 1150-1168 ◽  
Author(s):  
Pierre Jutras ◽  
Jason R. McLeod ◽  
John Utting

The Visean–Serpukhovian transition in Atlantic Canada was marked by a general humidification of the climate as the region drifted towards equatorial latitudes. It also corresponds to a time when ice volume was increasing on Gondwana, which marked the end of Mississippian marine incursions in the region. Glacioeustatic fluctuations of greater magnitude are thought to have increased the response of the regional climate to third-order cyclicity from orbital forcing. In the Cumberland Basin, fluvial grey beds of the lower Serpukhovian Shepody Formation were deposited in sub-humid conditions during highstands, whereas red playa deposits of the same unit were deposited under semi-arid conditions during lowstands. Basin reconstruction suggests that this unit was sourced from the fault-bounded Cobequid and Caledonia highlands and deposited in two separate salt-withdrawal minibasins. This fluvial system was seemingly discharging to the north into the broad lake that deposited the contemporaneous Hastings Formation. A disconformity separates the Shepody Formation from mid-Serpukhovian red beds of the Claremont Formation and is tentatively associated with another increase in ice volume on Gondwana followed by a recrudescence of fault activity and basin subsidence. A prolonged time of aridity, floral crisis, non-deposition, deep weathering and karstification in late Serpukhovian to early Bashkirian times is contemporaneous with abundant glacial deposits in higher latitudes, suggesting that globally low sea levels may have been at play in creating a situation of greater continentality in the study area.



1991 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
C. A. Knutson ◽  
I. C. Munro

AbstractThe Beryl Field, the sixth largest oil field in the UK sector of the North Sea, is located within Block 9/13 in the west-central part of the Viking Graben. The block was awarded in 1971 to a Mobil operated partnership and the 9/13-1 discovery well was drilled in 1972. The Beryl A platform was emplaced in 1975 and the Beryl B platform in 1983. To date, ninety-five wells have been drilled in the field, and drilling activity is anticipated into the mid-1990s.Commercial hydrocarbons occur in sandstone reservoirs ranging in age from Upper Triassic to Upper Jurassic. Structurally, the field consists of a NNE orientated horst in the Beryl A area and westward tilted fault blocks in the Beryl B area. The area is highly faulted and complicated by two major and four minor unconformities. The seal is provided by Upper Jurassic shales and Upper Cretaceous marls.There are three prospective sedimentary sections in the Beryl Field ranked in importance as follows: the Middle Jurassic coastal deltaic sediments, the Upper Triassic to Lower Jurassic continental and marine sediments, and the Upper Jurassic turbidites. The total ultimate recovery of the field is about 800 MMBBL oil and 1.6 TCF gas. As of December 1989, the field has produced nearly 430 MMBBL oil (primarily from the Middle Jurassic Beryl Formation), or about 50% of the ultimate recovery. Gas sales are scheduled to begin in the early 1990s. Oil and gas production is forecast until licence expiration in 2018.The Beryl Fields is located 215 miles northeast of Aberdeen, about 7 miles from the United Kingdom-Norwegian boundary. The field lies within Block 9/13 and covers and area of approximately 12 000 acres in water depths ranging from 350-400 ft. Block 9/13 contains several hydrocarbon-bearing structures, of which the Beryl Fields is the largest (Fig. 1). The field is subdivided into two producing areas: the Beryl Alpha area which includes the initial discovery well, and the Beryl Bravo area located to the north. The estimated of oil originally in place is 1400 MMBBL for Beryl A and 700 MMBBL for Beryl B. The fiel has combined gas in place of 2.8 TCF, consisting primarily of solution gas. Hydrocarbon accumulations occur in six reservoir horizons ranging in age from Upper Triassic to Upper Jurassic. The Middle Jurassic (Bathonian to Callovian) age Beryl Formation is the main reservoir unit and contains 78% of the total ultimate recovery.The field was named after Beryl Solomon, the wife of Charles Solomon, who was president of Mobil Europe in 1972 when the field was discovered. The satellite fields in Block 9/13 (Nevis, Ness and Linnhe) are named after Scottish lochs.



1986 ◽  
Vol 128 ◽  
pp. 103-121
Author(s):  
F Surlyk ◽  
S Piasecki ◽  
F Rolle

Active petroleum exploration in East Greenland is of fairly recent date and was preceded by a much longer history of scientific work and mineral exploration. The discovery in 1948 of lead-zinc mineralisation at Mestersvig resulted in the formation of Nordisk Mineselskab AIS in 1952. In the beginning of the seventies Nordisk Mineselskab initiated cooperation with the American oil company Atlantic Richfield (ARCO) in order to undertake petroleum exploration in Jameson Land. The Jameson Land basin contains a very thick Upper Palaeozoic - Mesozoic sedimentary sequence. Important potential source rocks are Lower Permian lacustrine mudstone, Upper Permian black marine mudstone, Middle Triassic dark marine limestone, uppermost Triassic black marginal marine mudstone, Lower Jurassic black mudstone and Upper Jurassic deep shelf black mudstone. Tbe Upper Permian mudstone, which is the most promising source rock, is immature to weakly mature along the western basin margin and is expected to be in the oil or gas-generating zone when deeply buried in the central part of the basin. Potential reservoir rocks include Upper Permian bank and mound limestones, uppermost Permian fan delta sandstones, Lower Triassic aeolian and braided river sandstones, and Lower, Middle and Upper Jurassic sandstones. The most important trap types are expected to be stratigraphic, such as Upper Permian limestone bodies, or combination stratigraphic-structural such as uppermost Permian or Lower Triassic sandstones in Early Triassic tilted fault blocks. In the offshore areas additional play types are probably to be found in tilted Jurassic fault blocks containing thick Lower, Middle and Upper Jurassic sandstones and lowermost Cretaceous sandstones and conglomerates. The recognition of the potential of the Upper Permian in petroleum exploration in East Greenland has important implications for petroleum exploration on the Norwegian shelf.



1985 ◽  
Vol 25 (1) ◽  
pp. 235 ◽  
Author(s):  
A.F. Williams ◽  
D.J. Poynton

The South Pepper field, discovered in 1982, is located 30 km southwest of Barrow Island in the offshore portion of the Barrow Sub-basin, Western Australia. The oil and gas accumulation occurs in the uppermost sands of the Lower Cretaceous Barrow Group and the overlying low permeability Mardie Greensand Member of the Muderong Shale.The hydrocarbons are trapped in one of several fault closed anticlines which lie on a high trend that includes the North Herald, Pepper and Barrow Island structures. This trend is postulated to have formed during the late Valanginian as the result of differential compaction and drape over a buried submarine fan sequence. During the Turonian the trend acted as a locus for folding induced by right-lateral wrenching along the sub-basin edge. Concurrent normal faulting dissected the fold into a number of smaller anticlines. This essentially compressional tectonic phase contrasted with the earlier extensional regime which was associated with rift development during the Callovian. A compressional tectonic event in the Middle Miocene produced apparent reverse movement on the South Pepper Fault but only minor changes to the structural closure.Geochemical and structural evidence indicates at least two periods of hydrocarbon migration into the top Barrow Group - Mardie Greensand reservoir. The earlier occurred in the Turonian subsequent to the period of wrench tectonics and involved the migration of oil from Lower Jurassic Dingo Claystone source rocks up the South Pepper Fault. This oil was biodegraded before the second episode of migration occurred after the Middle Miocene tectonism. The later oil is believed to have been sourced by the Middle to Upper Jurassic Dingo Claystone. Biodegradation at this stage ceased or became insignificant due to temperature increase and reduction of meteoric water flow. Gas-condensate, sourced from Triassic or Lower Jurassic sediments may have migrated into the structure with this second oil although a more recent migration cannot be ruled out.The proposed structural and hydrocarbon migration history fits regional as well as local geological observations for the Barrow Sub-basin. Further data particularly from older sections of the stratigraphic column within the area are needed to refine the interpretation.



2020 ◽  
Author(s):  
Bikram Singh Bali ◽  
Ahsan Afzal Wani

Abstract Kashmir basin is considered to be tectonically active where damaging earthquakes (historical and instrumental) and landslides have occurred. These geologic catastrophes make Kashmir valley prone to hazards. The fault bound Kashmir basin is marked by two mountain fronts: MF1 associated with the Panjal Thrust (PT) and Balapor Fault (BF) and MF2 associated with the Zanskar Thrust. These two structural units make Kashmir valley very susceptible to earthquakes. With this in view the whole basin was divided into 22 sub-basins. However only nine extreme north and south sub basins (five extreme southern and four northern extreme north) were studied to carry out relative tectonic activity of these two tectonic units. With the help of K-mean clustering of eight basin-related geomorphic indices (Hypsometric integral (Hi), Asymmetry factor (Af), Mountain front sinuosity (Smf), Basin shape (Circularity ratio (KA) and Elongation ratio (Eb)), Form factor (Ff), Bifurcation ratio (Rb) and Sinuosity index (Si) were calculated. The results of the geomorphic indices were correlated with the structural and seismic data after that they were grouped into low three (Class1), moderate (class2) and high (class3) relative tectonic activity zones based on the quantified geomorphic indices, earthquake data, structural data and field observations. The overall results infer the tectonic activity dies out towards the north of the Kashmir Valley. It was observed that the highest tectonic activity mostly corresponds to the sub basins in vicinity of the PT and BF stretching 100 Km from Shopian to Baramulla. The least tectonic activity was found to be associated with the ZT lying to the north and northeast part of the Kashmir Valley. The seismic frequency and the overall data analysis infer that the south and Southwestern side of the Kashmir has potential of moderate earthquake in future.



1999 ◽  
Vol 39 (1) ◽  
pp. 364 ◽  
Author(s):  
S.A. Smith ◽  
P.R. Tingate ◽  
C.M. Griffths ◽  
J.N.F. Hull

The Roebuck Basin is a sparsely explored, frontier province located between the Carnarvon and Browse basins on Australia's North West Shelf. Mapping of the main structural and depositional elements of the basin has led to the identification of new features and elucidated the basin's tectonic history.The newly-identified Oobagooma High is a 25 km wide north-south oriented, elongate structure that separates the Oobagooma and Rowley sub-basins at the Palaeozoic level. This structure links with the Bedout High to form a major hinge zone that stretches across the entire basin.In the study area, three sub-divisions of the Fitzroy Movement are observed which have been termed Fitzroy Movement I, II and III, of Middle Triassic, Late Triassic and Early Jurassic ages. A previously unidentified breakup event linked to Fitzroy Movement III in the Early Jurassic is inferred from the stratal geometries in the basin.The region lacks a source rock equivalent to the Upper Jurassic Dingo Claystone of the contiguous Carnarvon Basin. However, Lower Triassic marine shale and deltaic sands are well developed in the Bedout Sub-basin and based on the results of forward stratigraphic modelling using SEDPAK™ software and sequence stratigraphic correlations these sediments, have high source potential over most of the untested Rowley Sub-basin. Possible Jurassic source rocks in the Roebuck Basin were deposited under fluvio-deltaic conditions during waning thermal sag. Thinly developed sapropel zones exist in the Bedout Sub-basin but potential exists for greater thicknesses in the Rowley Sub-basin. This potential is suggested by the seismic character, sedimentary architecture and sedimentary modelling of Lower Jurassic rocks in the basin. Preliminary thermal modelling indicates that source rocks would have generated significant hydrocarbons from Middle Jurassic to the present. Timing of generation is favourable for trap formation.



Sign in / Sign up

Export Citation Format

Share Document