BOOBYALLA SUB-BASIN : A CRETACEOUS ONSHORE EXTENSION OF THE SOUTHERN EDGE OF THE BASS BASIN

1984 ◽  
Vol 24 (1) ◽  
pp. 110 ◽  
Author(s):  
W. R. Moore ◽  
P. W. Baillie ◽  
S. M. Forsyth ◽  
J. W. Hudspeth ◽  
R. G. Richardson ◽  
...  

Geophysical methods, including gravity, magnetics, refraction and reflection seismic, together with drilling have revealed the presence of a steep, fault-bounded trough of Cretaceous age in the Boobyalla Plains area, northeastern Tasmania. The trough is at least 500 m deep and contains the first proven Cretaceous sedimentary sequence from onshore Tasmania in the Boobyalla Sub-basin. The Boobyalla Sub-basin is the southeastern extremity of the Bass Basin and is bounded by faults having NW-SE, N-S and NE-SW trends.These Late Cretaceous sediments consist of poorly sorted boulder conglomerate, often containing dolerite boulders several metres in diameter, pebble conglomerate and poorly sorted ferruginous sandstone. Clast lithologies are variable but reflect local derivation. Away from the trough margins the infilling sediments become finer grained with conglomerate becoming a less prominent part of the sequence. The coarse-grained sequences are interpreted to have been deposited rapidly in close proximity to a fault scarp.The sediments are biostratigraphic equivalents of and represent a proximal (near-source) facies of the Eastern View Coal Measures, which were encountered in Durroon 1, drilled in the Bass Basin and some 60 km northwest of Boobyalla Plains. A minor volcanic episode probably affected this section of the Bass Basin about 100 Ma B.P. This may be related to tectonic disturbances and could be responsible for an unconformity at the base of the Eastern View Coal Measures indicated by offshore seismic information.

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1685-1705
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identify coarse-grained materials associated with the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with radio magnetotelluric and travel-time tomography models of the subsurface. Other ground geophysical data, such as high magnetic values, suggest a positive correlation with an increased thickness of the coarse-grained layer and shallower depths to the top of the bedrock and the top of the coarse-grained layer. The morphology of the river bottom and riverbanks, e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits, is clearly revealed. An extensive coarse-grained layer (P-wave velocity mostly between 1500 and 2500 m s−1 and resistivity from approximately 80 to 100 Ωm) exists within the sediments and is interpreted and modelled in a regional context. Several fracture zones are identified within the bedrock. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops located in the central part of the study area. The modelled groundwater flow in this layer promotes the leaching of marine salts from the overlying clays by seasonal inflow–outflow cycles and/or diffusion, which contributes to the formation of potential quick clays.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. B97-B107 ◽  
Author(s):  
Emil Lundberg ◽  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Mehrdad Bastani ◽  
Magnus Andersson

Quick-clay landslides often occur in the northern hemisphere in areas that were covered by Pleistocene glaciations. They are particularly common along the shorelines of the Göta River in southwestern Sweden. Characterization of potential landslide areas and identification of features that indicate high risk are necessary to better understand the triggering mechanisms of these events. Therefore, an intensive characterization project was initiated at the Fråstad landslide in Sweden. Part of the characterization program included the acquisition of 3D reflection seismic data to image structures in the normally consolidated sediments, as well as the bedrock topography below the landslide scar. Two seismic horizons within the glacial and postglacial sediments were observed. The shallowest seismic horizon (here, referred to as S1) corresponds to a coarse-grained layer that was previously detected by eight geotechnical boreholes located within the 3D survey area. Discontinuities in S1, mapped by the 3D reflection seismic data, occur across a zone that correlates with the landslide scar boundary, suggesting that this zone may have played a role in triggering and/or in limiting the extension of the landslide. If S1 is truncated by or mixed with clays in this zone, then the outflow of water from the permeable S1 into the clays above may have increased the amount of quick clays above this zone. The increased outflow of water may also have caused a higher pore-water pressure south of the zone, which in turn could have acted as a trigger for the landslide. We evaluated the potential of using the 3D reflection seismic method as a complement to drilling and other geophysical methods when performing landslide site investigations. We also demonstrated the importance of further investigating the relationship between 3D subsurface geometries and landslide development.


2019 ◽  
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identifying coarse-grained materials associated to the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with the radio magnetotelluric and traveltime tomography models. The morphology of the river bottom and riverbanks, as e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits is clearly revealed. An extensive coarse-grained layer exists in the sedimentary sequence and is interpreted and modelled in a regional context. Individual fractures and fracture zones are identified within bedrock and sediments. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops. The groundwater flow in the coarse-grained layer promotes leaching of marine salts from the overlying clays by slow infiltration and/or diffusion, which helps in the formation of potential quick clays. Magnetic data show coarse-grained materials at the landslide scar located in the study area, which may have acted as a sliding surface together with quick clays.


2019 ◽  
Vol 21 (9) ◽  
pp. 5123-5132 ◽  
Author(s):  
J. Hernández-Rojas ◽  
F. Calvo

The aggregation and physical growth of polycyclic aromatic hydrocarbon molecules was simulated using a coarse-grained potential and a stochastic Monte Carlo framework. In agreement with earlier studies, homomolecular nucleation of pyrene, coronene and circumcoronene is found to be limited at temperatures in the 500–1000 K range. Heteromolecular nucleation is found to occur with a minor spontaneous segregation toward pure and equi concentrations.


2017 ◽  
Vol 114 (5) ◽  
pp. 1021-1026 ◽  
Author(s):  
Laura A. Nguyen ◽  
Jimin Wang ◽  
Thomas A. Steitz

Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile by deprotonating the 2′-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5′ leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


1994 ◽  
Vol 6 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Duncan Pirrie

Late Cretaceous sedimentary rocks assigned to the Santa Marta (Herbert Sound Member) and López de Bertodano (Cape Lamb and Sandwich Bluff members) formations of the Marambio Group, crop out on Cape Lamb, Vega Island. Although previous studies have recognized that these sedimentary rocks were derived from the northern Antarctic Peninsula region, the work presented here allows the provenance and palaeogeographical evolution of the region to be described in detail. On the basis of both sandstone petrography and clay mineralogy, the Herbert Sound and Cape Lamb members reflect sediment input from a low relief source area, with sand grade sediment sourced from low grade metasediments, and clay grade sediment ultimately derived from the weathering of an andesitic source area. In contrast, the Sandwich Bluff Member reflects a switch to a predominantly andesitic volcaniclastic source. However, this sediment was largely derived from older volcanic suites due to renewed source area uplift, with only a minor component from coeval volcanism. Regional uplift of both the arc terrane and the western margin of the James Ross Basin was likely during the Maastrichtian.


2021 ◽  
pp. SP495-2021-72
Author(s):  
Domenico Chiarella ◽  
Daniel Joel

AbstractDeep-marine gravity-driven deposits represent one of the more investigated depositional systems due to their potential interest as target for exploration and carbon capture and storage activities, as well as an important record of the depositional history of a basin through time. Although the Halten Terrace (Norwegian Sea) is one of the main successful exploration areas, we still have poor understanding of the post-rift Cretaceous interval. Here, 3D seismic reflection and borehole data are integrated to investigate the stratigraphic distribution and sedimentological characteristics of the Cenomanian-Turonian intra Lange Sandstones in the Gimsan Basin and Grinda Graben. The Lange Formation records the deposition in a deep-marine environment of a thousand meter thick shale unit punctuated by tens of meters thick gravity-driven coarse-grained sandstone intervals sourced from the Norwegian mainland. The presence of gravity-driven deposits and the deep-marine setting is supported by seismic interpretation, architectural elements and the facies analysis of cored material acquired within the studied stratigraphic interval. Borehole data indicate the presence of both turbidites and hybrid-event beds rich in mud content. The results of this study have implications for the understanding of the distribution and reservoir potentiality of the Late Cretaceous Lange Formation in the Halten Terrace.


2021 ◽  
Author(s):  
Ulrich Polom ◽  
Rebekka Mecking ◽  
Phillip Leineweber ◽  
Andreas Omlin

<p>In the North German Basin salt tectonics generated a wide range of evaporite structures since the Upper Triassic, resulting in e.g. extended salt walls, salt diapirs, and salt pillows in the depth range up to 8 km. Due to their trap and seal properties these structures were in the focus of hydrocarbon exploration over many decades, leading to an excellent mapping of their geometries below 300 m in depth. During salt rise Rotliegend formations were partly involved as a constituent. Some structures penetrated the salt table, some also the former surface. Dissolution (subrosion) and erosion of the salt cap rock by meteoric water took place, combined with several glacial and intraglacial overprints. Finally the salt structures were covered by pleistocene and holocene sediments. This situation partly resulted in proneness for ongoing karstification of the salt cap rock, leading to e.g. local subsidence and sinkhole occurrence at the surface. The geometry, structure and internal lithology of these shallow salt cap rocks are widely unknown. Expanding urban and industrial development, water resources management and increasing climate change effects enhance the demands for shallow mapping and characterization of these structures regarding save building grounds and sustainable water resources.</p><p>Results of shallow drilling investigations of the salt cap rock and the overburden show unexpectedly heterogenous subsurface conditions, yielding to limited success towards mapping and characterization. Thus, shallow high-resolution geophysical methods are in demand to close the gaps with preferred focus of applicability in urban and industrial environments. Method evaluations starting in 2010 geared towards shallow high-resolution reflection seismic to meet the requirements of both depth penetration and structure resolution. Since 2017 a combination of S-wave and P-wave seismic methods including depth calibrations by Vertical Seismic Profiling (VSP) enabled 2.5D subsurface imaging starting few meters below the surface up to several hundred meters depth in 0.5-5 m resolution range, respectively. The resulting profiles image strong variations along the boundaries and on top of the salt cap rock. Beside improved mapping capabilities, aim of research is the development of characteristic data features to differentiate save and non-save areas.</p>


1976 ◽  
Vol 13 (10) ◽  
pp. 1460-1465 ◽  
Author(s):  
Roger M. Slatt ◽  
William W. Gardiner

Comparative petrology of the gravel- and sand-sized fractions of sediments from Conception Bay, Placentia Bay, and Halls Bay, Newfoundland, has shown gravel clasts to be of the same composition as local bedrock, and sands to range in composition from litharenite to lithic arkose depending upon the proportion of fine and coarse grained local bedrock. Sand-sized lithic fragments comprise the same lithologies as local bedrock. The petrology provides conclusive evidence that almost all of the sediments in each fiord are glacially eroded from local bedrock; they are deposited in the fiords and subsequently reworked. However, the occurrence and distribution of garnet and other less frequently occurring mineral and lithic species indicates that a minor proportion of the sediments has been transported into the fiords from offshore by ice-rafting and/or from the adjacent continental shelf by bottom currents.


Sign in / Sign up

Export Citation Format

Share Document