THE TECTONO-STRATIGRAPHY AND PETROLEUM POTENTIAL OF THE NORTHERN ABROLHOS SUB BASIN, WESTERN AUSTRALIA

1987 ◽  
Vol 27 (1) ◽  
pp. 112 ◽  
Author(s):  
Greg C. Smith ◽  
Robert G. Cowley

The Abrolhos Sub-basin lies offshore in Western Australia to the west of Geraldton and has geological affinities with the northern Perth Basin and the southern Carnarvon Basin. Both of these basins contain commercial petroleum accumulations, whereas the Abrolhos Sub-basin is a frontier area which is largely unexplored. A moderate seismic coverage of the sub-basin now exists but only two wells have been drilled, both of which were dry.Four main tectono-stratigraphic sequences are recognisable above Precambrian basement:Lower Palaeozoic Pre Rift SequenceCarboniferous-Permian Synrift/Rift Sequence S Triassic-Jurassic Rift Sequence4 Cretaceous to Recent Drift Sequence.The Lower Palaeozoic is only known on the eastern basin margins where it mainly consists of Silurian fluvial and alluvial fan red beds. The Carboniferous-Permian marine and coal measure volcanogenic synrift and rift sequences are characterised by north-south, mainly east-dipping extensional faulting, followed by widespread erosion. The Triassic sequence is about 2 km thick and comprises a basal marine Kockatea Shale, overlain by the marginal marine Woodada Formation and the Lesueur Formation red bed sequence. Subsidence during the Triassic was rapid but controlled by large NNW-SSE trending, high angle west-dipping, planar normal faults with minor rotation and extension. The Jurassic is poorly known, being confined to structurally deep blocks along the Mesozoic basin axis to the south and west. A renewed phase of NNW-SSE west-dipping extensional faulting began during the Jurassic and resulted in the development of rollover anticlines. Considerable erosion and non-deposition occurred forming a regional Neocomian unconformity. The postrift or drift sequence consists of transgressive marine shelf carbonates dipping basinward without further significant structuring.The main prospect types in the sub-basin include base Triassic transgressive sandstones or top Permian sandstones sealed by the Kockatea Shale in tilted fault blocks, and Triassic-Jurassic sandstones within rollover anticlines sealed by intraformational shales or the middle Jurassic Cadda Formation. The main source rocks include the Woodada and Kockatea formations which are within the oil generative zone over much of the sub-basin. However, identification of areas with the required coincidence of source, reservoir, seal and structural timing appears elusive.

1999 ◽  
Vol 39 (1) ◽  
pp. 322 ◽  
Author(s):  
G.M. Carlsen ◽  
S.N. Apak ◽  
K.A.R. Ghori K. Grey ◽  
M.K. Stevens

The sedimentology, palaeontology and geochemistry of Neoproterozoic, organic-rich, clastic and related carbonate deposits in Western Australia provide new insights into the first-order depositional controls on hydrocarbon source rocks in the Neoproterozoic. Organic facies are correlated with depositional facies, revealing the impact of organic productivity and transport of organic rich sediments on the accumulation of organic matter in different depositional environments. Sedimentation is largely limited to ramp, platform, shoal, lagoon and sabkha environments.Growth of benthic organisms in the photic zone was the primary process controlling the production of organic matter in the ramp-shoreline system of the Kanpa Formation. Storms and floods were the primary mechanism for moving organic rich sediments into dysoxic and anoxic depositional environments. Variations in organic facies are indicated by: 1) changes in the palynomorph assemblages, particularly the increase in acritarchs within shallow-water ramp facies and cyanobacterial filaments in quiet-water sediments; 2) organic-rich laminae, containing abundant cyanobacterial filaments and mat material; and 3) the oxidation state of preserved organic remains.Periods of high organic growth rates or periods of mass mortality may have led to the development of an anoxic zone at the water-sediment interface. In the shoal and lagoonal settings, higher rates of clastic sediment dilution combined with oxygenated conditions resulted in lower TOC and hydrogen depleted organic facies.Condensed sections overlying stromatolitic dolomites represent the most effective organic facies of all of the potential source laminae sampled in Empress–IA. Most of the Officer Basin succession is currently within the oil-generating window and hydrocarbon shows encourage further exploration.


2004 ◽  
Vol 40 (2) ◽  
pp. 159-174 ◽  
Author(s):  
C. J. Banks ◽  
J. A. Winchester

SynopsisRecords of ancient environments and past basin histories can be preserved in metasedimentary successions, despite their subsequent deformation and metamorphism. In the Central Scottish Highlands SE of Loch Ness, the Garva Bridge Psammite and the Glen Buck Pebbly Psammite Formations (hitherto included within the Glenshirra Subgroup at the base of the Neoproterozoic Grampian Group) represent a continuum of alluvial fan to shallow water sediments, deposited in a SE thinning fan-delta clastic wedge. These sediments, derived from an uplifted granitoid hinterland to the west, contrast with the overlying marine sedimentary rocks of the Corrieyairack Subgroup, which were deposited by sediment gravity flows within a submarine slope setting. The Glen Buck Pebbly Psammite/Garva Bridge Psammite Formations and the Corrieyairack Subgroup represent two genetic stratigraphic sequences divided by a sharp sequence boundary that records a major reorganization in basin architecture. Hence, we propose that the Garva Bridge Psammite and Glen Buck Pebbly Psammite Formations be included within a separate Glenshirra Group, genetically unrelated to either the marine deposits of the immediately overlying Grampian Group or the earlier, locally migmatized (Moinian?) basement to the Central Highlands. The Glenshirra Group thus represents the earliest phase of post-Knoydartian extension, predating the main Dalradian basin development.


2001 ◽  
Vol 138 (2) ◽  
pp. 161-184 ◽  
Author(s):  
GEORGE E. WILLIAMS

The presence of alluvial fan deposits in the lower Neoproterozoic Torridon Group in northwest Scotland illuminates Torridonian basin development at the eastern Laurentian margin. The 450 m thick Cape Wrath Member of the Applecross Formation consists of alluvial fan conglomerate and arkose succeeded by more distal, braidplain feldspathic sandstone. Palaeocurrent data comprising >2650 measurements on trough cross-bedding are of low variability and show overall eastward flow. The projection upcurrent of regionally divergent flow directions for the lower part of the member indicates a fan of c. 50 km radius with its apex 30 km to the west near a basement (pre-Caledonian) normal fault with downthrow to the east beneath the north Minch Basin. Extensional tectonics controlled deposition of the Applecross Formation. Regional uplift, causing erosion of a youthful topography on the Lewisian Gneiss, was followed by the development of the Applecross extensional basin in two main stages. Uplift of a western source area by movement on basin-bounding normal faults occurred first in the north and caused pediplanation and alluvial fan deposition in the Cape Wrath area, with subsequent uplift of the source area for the main body of the Applecross Formation occurring further to the west and south along the line of the Minch Fault. The bulk of the Applecross Formation was derived from a weathered terrain of felsic crystalline and related supracrustal rocks reaching from the Outer Hebrides region westward for up to c. 250 km onto what are now the continental margins of the North Atlantic. The tectonic events may mark an early phase in the crustal extension that led ultimately to the opening of the Iapetus ocean.


2019 ◽  
Vol 54 (1) ◽  
pp. 113
Author(s):  
Charlotte A Caplan ◽  
Helen C. Gildersleeves ◽  
Al G. Harding ◽  
Benedict J. R. Harris ◽  
Benedict W. W. Johnson ◽  
...  

We present a new map of 30 km2 of the northwestern Krania Basin at 1:10,000 scale, including rocks of the Pindos Ophiolite Group and associated units, and the sedimentary fill of the Krania Basin. The Krania Basin is a flexural basin developed in the Middle – Late Eocene and filled first with alluvial fan conglomerates and later with turbidite sandstones and siltstones, following a deepening of the basin. Analysis of the clasts within the sediment, combined with paleoflow analyses, suggest sediment input from the eroding Pindos Ophiolite to the west. The Pindos Ophiolite Group is represented in the area by pillow lavas, sheeted dykes and serpentinized harzburgites of the Aspropotamos Complex. The ophiolite forms imbricated, thrust bounded blocks which show two phases of thrusting, corresponding to Late Jurassic and Eocene stages of ophiolite emplacement. We identify five stages of deformation within the basin itself, starting with Early - Middle Eocene syndepositional extensional faulting associated with the formation of the basin. This was followed by four stages of post-depositional deformation, starting with Late Eocene compression associated with basin closure, which caused thrust faulting and folding of the sediments. Oligocene dextral faulting with a thrust component affected the basin margins. Finally, two normal faulting events with different orientations have affected the basin since the Miocene.


2010 ◽  
Vol 50 (2) ◽  
pp. 726 ◽  
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Leonie Jones ◽  
Josef Holzschuh

The onshore energy security program, funded by the Australian Government and conducted by Geoscience Australia, has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Detailed interpretation of deep seismic reflection profiles from four onshore basins, focussing on overall basin geometry and internal sequence stratigraphy, will be presented here, with the aim of assessing the petroleum potential of the basins. At the southern end of the exposed part of the Mt Isa Province, northwest Queensland, a deep seismic line (06GA–M6) crosses the Burke River structural zone of the Georgina Basin. The basin here is >50 km wide, with a half graben geometry, and bounded in the west by a rift border fault. Given the overall architecture, this basin will be of interest for petroleum exploration. The Millungera Basin in northwest Queensland is completely covered by the thin Eromanga Basin and was unknown prior to being detected on two seismic lines (06GA–M4 and 06GA–M5) acquired in 2006. Following this, seismic line 07GA–IG1 imaged a 65 km wide section of the basin. The geometry of internal stratigraphic sequences and a post-depositional thrust margin indicate that the original succession was much thicker than preserved today and may have potential for a petroleum system. The Yathong Trough, in the southeast part of the Darling Basin in NSW, has been imaged in seismic line 08GA–RS2 and interpreted in detail using sequence stratigraphic principles, with several sequences being mapped. Previous studies indicate that the upper part of this basin consists of Devonian sedimentary rocks, with potential source rocks at depth. In eastern South Australia, seismic line 08GA–A1 crossed the Cambrian Arrowie Basin, which is underlain by a Neoproterozoic succession of the Adelaide Rift System. Stratigraphic sequences have been mapped and can be tied to recent drilling for mineral and geothermal exploration. Shallow drill holes from past petroleum exploration have aided the assessment of the petroleum potential of the Cambrian Hawker Group, which contains bitumen in the core, indicating the presence of source rocks in the basin system.


1985 ◽  
Vol 25 (1) ◽  
pp. 362 ◽  
Author(s):  
P.E. Williamson ◽  
C.J. Pigram ◽  
J.B. Colwell ◽  
A.S. Scherl ◽  
K.L. Lockwood ◽  
...  

Exploration in the Bass Basin has mainly concentrated on the Eocene part of the Eastern View Coal Measures with the pre-Eocene stratigraphy hardly being tested. Structural mapping using a good quality Bureau of Mineral Resources regional seismic survey and infill industry seismic data, in conjunction with seismic stratigraphy and well data, has generated an understanding of the structure and stratigraphy of the pre- Eocene basin, which suggests that exploration potential exists in structural and stratigraphic leads of both Paleocene and Cretaceous age.The Paleocene structure is influenced by the reactivation of normal faults developed at the time of the mid Cretaceous rift unconformity and reflects drape over deeper features. Consequently fault dependent structural closures often persist from Paleocene to (?)Jurassic levels. Possible stratigraphic traps are also observed against horst blocks and around the basin margins. The longitudinal fault directions are northwest and west northwest with an oblique northerly direction and a prevailing north northeasterly transverse direction.The Paieocene and Upper Cretaceous part of the Eastern View Coal Measures consists of sands, shales and coals deposited in alluvial fans, on flood plains, and in lakes. These are underlain by Early Cretaceous Otway Groups, sands, shales and volcanics. Both intervals have potential reservoir and source rocks and often occur at mature depths. No pre-Otway Group sediments have been encountered in wells in the Bass Basin. However, the Permo- Carboniferous and possibly Triassic strata that occur in Northern Tasmania exhibit reservoir and source rock potential and may extend offshore beneath the Bass Basin.Pre-Eocene structural and stratigraphic studies of the Bass Basin thus point to reservoir and hydrocarbon source potential for possible multiple hydrocarbon exploration targets.


2001 ◽  
Vol 138 (4) ◽  
pp. 471-494 ◽  
Author(s):  
GEORGE E. WILLIAMS

The presence of alluvial fan deposits in the lower Neoproterozoic Torridon Group in north-west Scotland illuminates Torridonian basin development at the eastern Laurentian margin. The 450 m thick Cape Wrath Member of the Applecross Formation consists of alluvial fan conglomerate and arkose succeeded by more distal, braidplain feldspathic sandstone. Palaeocurrent data comprising > 2650 measurements on trough cross-bedding are of low variability and show overall eastward flow. The projection upcurrent of regionally divergent flow directions for the lower part of the member indicates a fan of c. 50 km radius with its apex 30 km to the west near a basement (pre-Caledonian) normal fault with downthrow to the east beneath the north Minch Basin. Extensional tectonics controlled deposition of the Applecross Formation. Regional uplift, causing erosion of a youthful topography on the Lewisian Gneiss, was followed by the development of the Applecross extensional basin in two main stages. Uplift of a western source area by movement on basin-bounding normal faults occurred first in the north and caused pediplanation and alluvial fan deposition in the Cape Wrath area, with subsequent uplift of the source area for the main body of the Applecross Formation occurring further to the west and south along the line of the Minch Fault. The bulk of the Applecross Formation was derived from a weathered terrain of felsic crystalline and related supracrustal rocks reaching from the Outer Hebrides region westward for up to c. 250 km onto what are now the continental margins of the North Atlantic. The tectonic events may mark an early phase in the crustal extension that led ultimately to the opening of the Iapetus ocean.


Author(s):  
Niels Hemmingsen Schovsbo ◽  
Arne Thorshøj Nielsen

The Lower Palaeozoic succession in Scandinavia includes several excellent marine source rocks notably the Alum Shale, the Dicellograptus shale and the Rastrites Shale that have been targets for shale gas exploration since 2008. We here report on samples of these source rocks from cored shallow scientific wells in southern Sweden. The samples contain both free and sorbed hydrocarbon gases with concentrations significantly above the background gas level. The gases consist of a mixture of thermogenic and bacterially derived gas. The latter likely derives from both carbonate reduction and methyl fermentation processes. The presence of both thermogenic and biogenic gas in the Lower Palaeozoic shales is in agreement with results from past and present exploration activities; thermogenic gas is a target in deeply buried, gas-mature shales in southernmost Sweden, Denmark and northern Poland, whereas biogenic gas is a target in shallow, immature-marginally mature shales in south central Sweden. We here document that biogenic gas signatures are present also in gas-mature shallow buried shales in Skåne in southernmost Sweden.


2021 ◽  
pp. M57-2021-15
Author(s):  
E. V. Deev ◽  
G. G. Shemin ◽  
V. A. Vernikovsky ◽  
O. I. Bostrikov ◽  
P. A. Glazyrin ◽  
...  

AbstractThe Yenisei-Khatanga Composite Tectono-Sedimentary Element (YKh CTSE) is located between the Siberian Craton and the Taimyr-Severnaya Zemlya fold-and-thrust belt. The total thickness of the Mesoproterozoic-Cenozoic sediments of YKh CTSE reaches 20 to 25 km. They are divided into four tectono-sedimentary elements (TSE): (i) Mesoproterozoic-early Carboniferous Siberian Craton continental margin, (ii) middle Carboniferous-Middle Triassic syn-orogenic Taimyr foreland basin, (iii) late Permian-Early Triassic syn-rift, and (iv) Triassic-Early Paleocene post-rift. The last one is the most important in terms of its petroleum potential and is the most drilled part of the CTSE. Its thickness accounts for half of the total thickness of YKh CTSE. The margins of the post-rift TSE and the inner system of inversion swells and adjacent troughs and depressions were shaped by three tectonic events: (i) middle Carboniferous-Middle Triassic Taimyr orogeny, (ii) Late Jurassic-Early Cretaceous Verkhoyansk orogeny, (iii) Late Cenozoic uplift. These processes led to more intense migration of hydrocarbons, the trap formation and their infill with hydrocarbons. Triassic, Jurassic, and Lower Cretaceous source rocks are mostly gas-prone, and among 20 discovered fields in Jurassic and Cretaceous plays, 17 are gas or mixed-type fields.


Sign in / Sign up

Export Citation Format

Share Document