Assessing the sustainability of wheat-based cropping systems using APSIM: model parameterisation and evaluation

2007 ◽  
Vol 58 (1) ◽  
pp. 75 ◽  
Author(s):  
Carina Moeller ◽  
Mustafa Pala ◽  
Ahmad M. Manschadi ◽  
Holger Meinke ◽  
Joachim Sauerborn

Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998–99 and 1999–2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM’s cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat–fallow and wheat–chickpea rotations (1987–98) were nevertheless well simulated when the soil water content in 0–0.45 m soil depth was set to ‘air dry’ at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM’s nitrogen module. APSIM was capable of predicting long-term trends (1985–98) in soil organic matter in wheat–fallow and wheat–chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat–chickpea rotations at Tel Hadya.

2000 ◽  
Vol 40 (1) ◽  
pp. 37 ◽  
Author(s):  
S. J. Lolicato

Fortnightly soil water content measurements to a depth of 2.1 m under 4 cocksfoot cultivars, 2 phalaris cultivars, 2 lucerne cultivars and 1 Lotus corniculatus cultivar were used to compare soil profile drying and to define seasonal patterns of plant water use of the species over a 3-year period, on a duplex soil. Cultivars were also selected, within species groups, for varying seasonal growth patterns to assess this influence on soil water dynamics and growth. Over the 3-year period, treatments with the highest and lowest measures of profile soil water content were used to derive and compare values of maximum plant extractable water. Plots were maintained for a further 3 years, after which soil water content measurements in autumn were used to assess long-term effects of the treatments. The effect of seasonal growth patterns within a species was negligible; however, there were significant differences between species. Twenty-one months after pasture establishment, lucerne alone had a drying effect at 2.0 m depth and subsequently it consistently showed profiles with the lowest soil water content. Maximum plant extractable water was greatest for lucerne (230 mm), followed by phalaris (210 mm), Lotus corniculatus (200 mm) and cocksfoot (170 mm). Profiles with the lowest soil water content were associated with greater herbage growth and greater depths of water extraction. The soil water deficits developed by the treatments in autumn of the fourth year were similar to those measured in autumn of the seventh year, implying that a species-dependant equilibrium had been reached. Long-term rainfall data is used to calculate the probabilities of recharge occurring when rainfall exceeds maximum potential deficits for the different pasture species.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Felipe Bonini da Luz ◽  
Martha Lustosa Carvalho ◽  
Daniel Aquino de Borba ◽  
Bruna Emanuele Schiebelbein ◽  
Renato Paiva de Lima ◽  
...  

Brazil is the world’s largest sugarcane producer with projections for expanding the current area by 30% in the coming years, mainly in areas previously occupied by pastures. We assess soil water changes induced by land-use change (LUC) for sugarcane expansion in the central-south region of Brazil. For that purpose, soil samples were collected in a typical LUC sequence (native vegetation–pasture–sugarcane) in two contrasting soil textures (i.e., sandy and clayey). Soil hydro-physical properties such as pores size distribution, bulk density, soil water content, water tension, and drainage time at field capacity, plant-available water, and S-index were analyzed. Our data showed that long-term LUC from native vegetation to extensive pasture induced severe degradation in soil physical quality and soil water dynamics. However, conventional tillage used during conversion from pasture to sugarcane did not cause additional degradation on soil structure and soil water dynamics. Over time, sugarcane cultivation slightly impaired soil water and physical conditions, but only in the 10–20 cm layer in both soils. Therefore, we highlight that sustainable management practices to enhance soil physical quality and water dynamics in sugarcane fields are needed to prevent limiting conditions to plant growth and contribute to delivering other ecosystem services.


1990 ◽  
Vol 20 (9) ◽  
pp. 1490-1497 ◽  
Author(s):  
P. J. Smethurst ◽  
E. K. S. Nambiar

The effects of clear-felling and slash removal on the distribution of organic matter and nutrients, fluxes of mineral N, and soil water and temperature were studied in a 37-year-old Pinusradiata D. Don plantation, on a sandy Podzol in southeastern Australia. Slash, litter, and the top 30 cm of soil combined contained 1957 kg N•ha−1, of which slash and litter contained 12 and 25%, respectively. Therefore, loss of slash and litter due to burning or other intensive site preparation practices would substantially reduce the N capital at the site. During the first 18 months after clear-felling, soil water content in the clear-felled area was up to 50% higher than in the uncut plantation, but there were only minor differences in soil temperature. Slash removal decreased the water content of litter, but had little effect on the water content or temperature of the soil. In the uncut plantation, N mineralized in litter and soil was completely taken up by the trees. Following clear-felling, rates of N mineralization increased in litter after 4 months, and in soil after 12 months, but changes were less pronounced with slash removal. After clear-felling, increased mineralization and the absence of trees (no uptake) led to increased concentrations of mineral N in both litter and soil, 64–76% of which was leached below the 30 cm soil depth prior to replanting. Despite leaching, concentrations of mineral N after clear-felling remained higher than those in the uncut plantation for at least 3 years.


Ecology ◽  
1992 ◽  
Vol 73 (4) ◽  
pp. 1175-1181 ◽  
Author(s):  
O. E. Sala ◽  
W. K. Lauenroth ◽  
W. J. Parton

Ecohydrology ◽  
2015 ◽  
Vol 9 (4) ◽  
pp. 673-687 ◽  
Author(s):  
Julie A. Finzel ◽  
Mark S. Seyfried ◽  
Mark A. Weltz ◽  
Karen L. Launchbaugh

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2190
Author(s):  
Ranjan Laik ◽  
B. H. Kumara ◽  
Biswajit Pramanick ◽  
Santosh Kumar Singh ◽  
Nidhi ◽  
...  

Labile soil organic matter pools (LSOMp) are believed to be the most sensitive indicator of soil quality when it is changed rapidly with varied management practices. In sub-tropical climates, the turnover period of labile pools is quicker than in temperate climates. Organic amendments are of importance in improve the LSOMp for a temperate climate and may be helpful in sub-tropical climates as well. Hence, the status of LSOMp was studied in long term farmyard manure (FYM) amended soils under wheat (Triticum aestivum L.) and pearl millet (Pennisetum glaucum L.) cropping systems in sub-tropical arid conditions. At the same time, we also attempt to determine the impact of mineral nitrogen (N) application in these pools. In this study, dissolved organic matter (DOM), microbial biomass (MB), and light fraction (LF) were isolated in the management practices involving different modes and rates of FYM applications along with the application of nitrogenous fertilizer. C and N contents of the labile pools were analyzed in the soil samples at different periods after FYM applications. Among the different pools, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were changed significantly with different rates and modes of FYM application and mineral N application. Application of FYM at 15 Mg ha−1 in both the seasons + 120 kg ha−1 mineral N resulted in significantly higher MBC and DOC as compared to all of the other treatments. This treatment also resulted in 13.75% and 5.8% more MBC and DOC, respectively, as compared to the amount of MBC and DOC content in the control plot where FYM and mineral N were not applied. Comparing the labile organic matter pools of 45 years of FYM amendment with initial values, it was found that the dissolved organic carbon, microbial biomass carbon, and light fraction carbon were increased up to the maximum extent of about 600, 1200, and 700 times, respectively. The maximum amount of DOM (562 mg kg−1 of DOC and 70.1 mg kg−1 of DON), MB (999 mg kg−1 of MBC and 158.4 mg kg−1 of MBN), LF (2.61 g kg−1 of LFC and 154.6 g kg−1 of LFN) were found in case of both season applied FYM as compared to either summer or winter applied FYM. Concerning the different rates of FYM application, 15 Mg ha−1 FYM also resulted in a significantly higher amount of DOM, MB, and LF as compared to other FYM rates (i.e., 5 Mg ha−1 and 10 Mg ha−1). Amongst different pools, MB was found to be the most sensitive to management practices in this study. From this study, it was found that the long-term FYM amendment in sub-tropical soil along with mineral N application can improve the LSOMp of the soil. Thus, it can be recommended that the application of FYM at 15 Mg ha−1 in summer and winter with +120 kg ha−1 mineral N can improve SOC and its labile pools in subtropical arid soils. Future studies on LSOMp can be carried out by considering different cropping systems of subtropical climate.


2020 ◽  
pp. 1-15
Author(s):  
Francis J. Larney ◽  
Drusilla C. Pearson ◽  
Gregg H. Dill ◽  
Timothy D. Schwinghamer ◽  
Francis Zvomuya ◽  
...  

Dry bean (Phaseolus vulgaris L.), potato (Solanum tuberosum L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) are mainstays of irrigated crop production in southern Alberta. Concerns about soil quality and sustainability instigated a 12 yr (2000–2011) rotation study to compare conventional (CONV) with conservation (CONS) management practices (reduced tillage, narrow-row dry bean, compost addition, and cover cropping). Plant-available water (PAW) was measured using a neutron probe (10–16 count days·season−1, n = 148) on all phases of 4 yr (dry bean–potato–wheat–sugar beet) rotations under CONS and CONV management. A visual monitoring approach was used for irrigation scheduling. For dry bean and sugar beet, management allowable depletion (MAD) was exceeded on only 11%–15% of neutron probe count days over 12 yr. However, MAD was exceeded on 30% of count days for wheat and 43% for potato. Significant crop × management interactions showed that PAW was higher with CONS management most frequently on potato, followed by dry bean, wheat, and sugar beet. This order reflected the prevalence of CONS practices directly impacting each crop. Regression analyses showed that potato, wheat, and sugar beet yield increased significantly as mean growing season water table depth (WTD) increased. This was explained by yield suppression due to excessive soil wetness in seasons with high rainfall and shallow WTD. This study provided comparative soil water dynamics for four major irrigated crops in southern Alberta, over a 12 yr period, which included record high and low growing season precipitation.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 320 ◽  
Author(s):  
K. Y. Chan ◽  
M. K. Conyers ◽  
G. D. Li ◽  
K. R. Helyar ◽  
G. Poile ◽  
...  

In addition to its important influence on soil quality and therefore crop productivity, soil organic carbon (SOC) has also been identified as a possible C sink for sequestering atmospheric carbon dioxide. Limited data are available on the impact of management practices on the rate of SOC change in agricultural soils in Australia. In this paper, results of three long-term trials (13–25 years) located near Wagga Wagga in temperate Australia were used to assess C dynamics under different tillage and stubble management practices, and under cropping intensities in pasture/crop rotations. Experimental results confirm the importance of management practices and pasture in determining first the steady-state SOC concentrations that are characteristic of given rotations and crop management systems, and second the rates of change of SOC concentrations as they approach steady-state concentrations in agricultural soils of this agro-ecological zone. A long-term crop/pasture experiment at a site with initial high SOC showed that the rate of SOC change in different treatments ranged from –278 to +257 kg C/ha.year over 0–0.3 m soil depth. Under continuous cropping, even under conservation agriculture practices of no-tillage, stubble retention, and crop rotation, the high initial SOC stock (0–0.3 m) present after a long-term pasture phase was, at best, maintained but tended to decrease with increased tillage or stubble burning practices. The effect of tillage was greater than that of stubble management. Increases in SOC were observed only in rotations incorporating a pasture phase. Our results suggest that improved soil nutrient and grazing management of permanent pasture can lead to an increase of 500–700 kg C/ha.year where the initial SOC concentrations are well below steady-state concentrations that could be expected after long periods of improved management. No difference was found between perennial pasture and annual pasture to the depth measured (0–0.3 m). Our results suggest that pasture holds the key to maintaining, and even increasing, SOC under crop/pasture in this environment.


2000 ◽  
Vol 135 (2) ◽  
pp. 139-149 ◽  
Author(s):  
A. BHOGAL ◽  
A. D. ROCHFORD ◽  
R. SYLVESTER-BRADLEY

The effects of eight rates of nitrogen (N) application (0–245 kg/ha) on the performance of winter wheat over five seasons (1991–1995) on a long-term field experiment (established 1978) at Ropsley (UK) are described. In each of the five seasons, N was withdrawn from replicate plots in order to study the residual effect of fertilizer. N applications in excess of 140 kg/ha left significant residues as soil mineral N (SMN) in the autumn which, despite some loss over-winter, had a significant effect on the yield and N offtake of the subsequent crop. The amount of N carried over was equivalent to 8–20% of the fertilizer N and was observed at N applications up to 40 kg/ha lower than the optimum rate (c. 200 kg/ha). Part of the unrecovered N was also considered to contribute to the long-term build-up of fertility at the site. The results suggest that restrictions on N use to below the optimum will reduce leachable N, but may have an impact on soil fertility and future crop productivity. In addition, the rate of N applied to preceding crops should be taken into account when formulating fertilizer advice on retentive soils.


Sign in / Sign up

Export Citation Format

Share Document