QTL analysis of yield-related traits and their association with functional markers in Brassica napus L.

2007 ◽  
Vol 58 (8) ◽  
pp. 759 ◽  
Author(s):  
Yuanyuan Li ◽  
Jinxiong Shen ◽  
Tonghua Wang ◽  
Qingfang Chen ◽  
Xingguo Zhang ◽  
...  

Yield is one of the most important traits in Brassica napus breeding programs. Quantitative trait loci (QTLs) for yield-related traits based on genetic mapping would help breeders to develop high-yield cultivars. In this study, a genetic linkage map of B. napus, containing 142 sequence-related amplified polymorphism (SRAP) markers, 163 functional markers, 160 simple sequence repeat (SSR) markers, and 117 amplified fragment length polymorphism (AFLP) markers, was constructed in an F2 population of 184 individuals resulting from the cross SI-1300 × Eagle. This map covered 2054.51 cM with an average marker interval of 3.53 cM. Subsequently, QTLs were detected for 12 yield-related traits in Wuhan and Jingmen. In total, 133 QTLs were identified, including 14 consistent ones across the 2 locations. Fifteen of 20 linkage groups (LGs) were found to have QTLs for the 12 traits investigated, and most of the QTLs were clustered, especially on LGs N2 and N7, where similar QTL positions were identified for multiple traits. Eight of 10 QTLs for yield per plant (YP) were also associated with number of seeds per silique (SS), number of siliques per plant (SP), and/or 1000-seed weight (SW). In addition, 45 functional markers involved in 39 expressed sequence tags (ESTs) were linked to the QTLs of 12 traits. The present results may serve as a valuable basis for further molecular dissection of agronomic traits in B. napus, and the markers related to QTLs may offer promising possible makers for marker assisted selection.

2009 ◽  
Vol 60 (12) ◽  
pp. 1193 ◽  
Author(s):  
J. Wang ◽  
S. Kaur ◽  
N. O. I. Cogan ◽  
M. P. Dobrowolski ◽  
P. A. Salisbury ◽  
...  

Australian canola (Brassica napus L.) has been relatively isolated from the global gene pool and limited knowledge is available for genetic variability based on DNA profiling. In the present study, genetic diversity of recent Australian canola cultivars was determined by simple sequence repeat (SSR) marker analysis. In total, 405 individuals from 48 varieties were genotyped with 18 primer pairs, resulting in 112 polymorphic features. The number of polymorphic features amplified by each SSR primer pair varied from 3 to 16. Analysis of molecular variance (AMOVA) detected 53.7% and 46.3% within- and between-cultivar variation, respectively. Intra-cultivar genetic variability differed according to cultivar. The number of polymorphic features per cultivar varied from 35 (Ag-Spectrum) to 72 (Ag-Insignia), while mean sum of squares (MSS) varied from 6.29 (Tornado TT) to 24.76 (Ag-Emblem). Genetic differentiation of cultivars generally reflected pedigree structure and origin by breeding organisation. Clustering and principal coordinate analysis (PCoA) indicated that the individuals were separated into 4 major groups. The genetic diversity information from this study will be useful for future Australian canola breeding programs.


2021 ◽  
Vol 13 (15) ◽  
pp. 8247
Author(s):  
Dimitrios N. Vlachostergios ◽  
Christos Noulas ◽  
Anastasia Kargiotidou ◽  
Dimitrios Baxevanos ◽  
Evangelia Tigka ◽  
...  

Lentil is a versatile and profitable pulse crop with high nutritional food and feed values. The objectives of the study were to determine suitable locations for high yield and quality in terms of production and/or breeding, and to identify promising genotypes. For this reason, five lentil genotypes were evaluated in a multi-location network consisting of ten diverse sites for two consecutive growing seasons, for seed yield (SY), other agronomic traits, crude protein (CP), cooking time (CT) and crude protein yield (CPY). A significant diversification and specialization of the locations was identified with regards to SY, CP, CT and CPY. Different locations showed optimal values for each trait. Locations E4 and E3, followed by E10, were “ideal” for SY; locations E1, E3 and E7 were ideal for high CP; and the “ideal” locations for CT were E3 and E5, followed by E2. Therefore, the scope of the cultivation determined the optimum locations for lentil cultivation. The GGE-biplot analysis revealed different discriminating abilities and representativeness among the locations for the identification of the most productive and stable genotypes. Location E3 (Orestiada, Region of Thrace) was recognized as being optimal for lentil breeding, as it was the “ideal” or close to “ideal” for the selection of superior genotypes for SY, CP, CT and CPY. Adaptable genotypes (cv. Dimitra, Samos) showed a high SY along with excellent values for CP, CT and CPY, and are suggested either for cultivation in many regions or to be exploited in breeding programs.


Author(s):  
Régine Delourme ◽  
Anne Laperche ◽  
Anne-Sophie Bouchet ◽  
Mélanie Jubault ◽  
Sophie Paillard ◽  
...  

2018 ◽  
Vol 97 (5) ◽  
pp. 1389-1406 ◽  
Author(s):  
Farshad Fattahi ◽  
Barat Ali Fakheri ◽  
Mahmood Solouki ◽  
Christian Möllers ◽  
Abbas Rezaizad

1994 ◽  
Vol 74 (2) ◽  
pp. 275-277 ◽  
Author(s):  
L. A. Murphy ◽  
R. Scarth

Early maturity is a major objective of oilseed rape (Brassica napus L.) breeding programs in western Canada. Maturity of crops is influenced by time of initiation and flowering. The presence of a vernalization requirement affects plant development by delaying floral initiation until the cold requirement of the plant has been satisfied. Five spring oilseed rape cultivars were screened for their response to vernalization. Vernalization treatments consisted of exposure of germinated seeds to 0–42 d at 4 °C. Plants were assessed under a 20-h photoperiod. In general, there was a cumulative response to vernalization, with a decrease in days to each developmental stage as exposure to 4 °C was increased. Vernalization treatment of 6 d at 4 °C was sufficient to decrease both the days to first flower and the final leaf number. The characterization of vernalization response is of interest because variation in flowering time in response to year-to-year variations in the environment could result. Key words:Brassica napus, canola, oilseed rape, vernalization


Plant Disease ◽  
2021 ◽  
Author(s):  
Homa Askarian ◽  
Alireza Akhavan ◽  
Leonardo Galindo González ◽  
Sheau-Fang Hwang ◽  
Stephen Ernest Strelkov

Clubroot, caused by Plasmodiophora brassicae Woronin, is a significant threat to the canola (Brassica napus L.) industry in Canada. Clubroot resistance has been overcome in more than 200 fields since 2013, representing one of the biggest challenges to sustainable canola production. The genetic structure of 36 single-spore isolates derived from 12 field isolates of P. brassicae collected before and after the introduction of clubroot resistant (CR) canola cultivars (2005-2014) was evaluated by simple sequence repeat (SSR) marker analysis. Polymorphisms were detected in 32 loci with the identification of 93 distinct alleles. A low level of genetic diversity was found among the single-spore isolates. Haploid linkage disequilibrium and number of migrants suggested that recombination and migration were rare or almost absent in the tested P. brassicae population. A relatively clear relationship was found between the genetic structure and virulence phenotypes of the pathogen as defined on the differential hosts of Somé et al., Williams and the Canadian Clubroot Differential (CCD) set. Although genetic variability within each pathotype group, as classified on each differential system, was low, significant genetic differentiation was observed among the pathotypes. The highest correlation between genetic structure and virulence was found among matrices produced with genetic data and the hosts of the CCD set, with a threshold index of disease of 50% to distinguish susceptible from resistant reactions. Genetically homogeneous single-spore isolates provided a more complete and clearer picture of the population genetic structure of P. brassicae, and the results suggest some promise for the development of pathotype-specific primers.


1977 ◽  
Vol 57 (3) ◽  
pp. 937-943 ◽  
Author(s):  
BAHRAM GRAMI ◽  
B. R. STEFANSSON ◽  
R. J. BAKER

The estimates of broad sense heritability in the F2 generation derived from a cross involving two summer rape (Brassica napus L.) cultivars were approximately 0.26 for each of percent protein and percent oil, and 0.33 for the "sum" of protein and oil as a percentage of the seed. The number of effective factors conditioning parental differences in percent protein, percent oil, and sum were estimated as five to seven, one, and two, respectively. Average phenotypic and genotypic correlations between protein and oil content were −0.81 and −0.71, respectively. These strong negative correlations, often considered undesirable, can be utilized in oilseed breeding programs by selecting for the sum of protein and oil rather than for either component.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 414-416 ◽  
Author(s):  
P. K. Tanhuanpää ◽  
J. P. Vilkki ◽  
H. J. Vilkki

The F2 progeny (64 individuals) from the cross between oilseed rape (Brassica napus L.) cultivar Topas and R4 (a low linolenic mutation line) was analyzed with 8 RFLPs and 34 RAPDs to discover a genetic tag for gene(s) affecting linolenic acid concentration. According to variance analysis (ANOVA), one RAPD marker (25a) was significantly associated with linolenic acid content; the linolenic acid concentration in the seeds of F2 individuals showing the marker (includes both homo- and hetero-zygotes) was 7.43 ± 1.35% and in those lacking the marker was 5.70 ± 1.52%. Marker 25a may be used to facilitate selection for fatty acid composition in future breeding programs of oilseed rape.Key words: Brassica napus, RFLP, RAPD, linolenic acid.


2014 ◽  
Vol 61 (5) ◽  
pp. 979-999 ◽  
Author(s):  
Biyun Chen ◽  
Kun Xu ◽  
Jun Li ◽  
Feng Li ◽  
Jiangwei Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document