Changes in organic matter and pH in a podzolic soil as influenced by subterranean clover and superphosphate

1957 ◽  
Vol 8 (2) ◽  
pp. 179 ◽  
Author(s):  
CH Williams ◽  
CM Donald

A further investigation has been made on soils examined by Donald and Williams (1955) in a survey of the influence of superphosphate and subterranean clover (Trifolium subterraneum L.) on podzolic soils formed on granodiorite in the Crookwell district of New South Wales. The soil organic matter was found to have approximately constant proportions of carbon, nitrogen, sulphur, and phosphorus in the ratio 155 : 10 : 1.4 : 0.68, and it is suggested that the rate of build-up of soil organic matter under the clover pastures may have been limited by the amounts of sulphur supplied in the superphosphate top-dressings. The soil organic matter was found to have a cation-exchange capacity a t pH 7.0 of about 220 m-equiv./100 g, and increases in soil organic matter have led to substantial increases in the cation-exchange capacity of the soil. About 75 per cent. of the total cation-exchange capacity of the unimproved soils was due to organic matter while, in the most improved soils, this figure approached 90 per cent. The increases in cation-exchange capacity included increases in exchangeable hydrogen and were accompanied by decreases in soil pH. There were increases equivalent to 6.5 lb of exchangeable potassium, 25.5 Ib of exchangeable calcium, and 5.2 lb of exchangeable magnesium per acre in the surface 4 in. of soil for each hundredweight of superphosphate applied per acre. Increases in soil organic matter also resulted in increases in the field capacity which may reflect improvements in soil structure. Results indicate that heavier rates of superphosphate application would increase the rate of fertility build-up.

1999 ◽  
Vol 79 (3) ◽  
pp. 501-504 ◽  
Author(s):  
B. J. Zebarth ◽  
G. H. Neilsen ◽  
E. Hogue ◽  
D. Neilsen

Sandy, infertile soils can benefit from the addition of organic waste amendments. Annual applications of organic wastes for as long as 4 yr increased soil organic matter content, decreased soil bulk density, and increased soil water retention of a coarse-textured soil. However, soil water-holding capacity was not necessarily increased, and there was a limited effect on soil cation exchange capacity. Key words: Cation exchange capacity, water retention, soil pH, soil organic matter, soil bulk density


1954 ◽  
Vol 5 (4) ◽  
pp. 664 ◽  
Author(s):  
CM Donald ◽  
CH Williams

A survey was made of the influence of the use of superphosphate and subterranean clover (Trifolium subterraneum L.) on podzolic soils formed on granodiorite in the Crookwell district of New South Wales (average rainfall, 32.7 in. per annum). Forty-four paddocks were sampled; they varied from untreated native pasture to paddocks which had been for 26 years continuously under clover and which had received a total of 13 cwt of superphosphate per acre. In all instances there had been no cultivation during treatment, and the land use mas uniformly one of sheep raising, principally for wool but with some emphasis on fat lamb production on highly improved pastures. Criteria used in this study were the changes in yield and botanical composition of the pasture, changes or trends in the chemical composition of the 0-4 in. depth of soil, and the yield of oats produced by each of the soils in pot culture with varying superimposed applications of phosphorus, sulphur, and nitrogen. The native pasture species disappear under the competition by subterranean clover, which gives a fourfold increase in the yield of pasture. Within the limits of experimental error, the phosphorus and sulphur applied as superphosphate, even that applied many years previously, can be accounted for in the surface 4 in. of soil. Losses by removal in wool and carcases are small. The added phosphorus is present in approximately equal amounts as organic phosphorus and readily extractable inorganic phosphorus. The applied sulphur appears to become a part of the organic complex. Eighty-five pounds of nitrogen has been added in the surface 4 in. of soil by rhizobial activity for each hundredweight of superphosphate applied per acre. Initially the most acute deficiencies affecting plant growth on these soils are those of phosphorus and nitrogen, with a less pronounced deficiency of sulphur. After a period of several years of superphosphate and clover, each of these deficiencies is much reduced, the order of the intensity of deficiencies then being nitrogen, sulphur, and phosphorus. Soil pH falls with superphosphate application at the rate of about 0.06 units per hundredweight of fertilizer per acre, but may reach an equilibrium value at about 5.1. This could be due to the increase in exchange capacity of the soil as a result of the increase in organic matter. A field experiment on two sites also indicated the increase in fertility under subterranean clover pasture and demonstrated the capacity of the improved soils to produce a satisfactory field crop of oats.


1983 ◽  
Vol 23 (121) ◽  
pp. 181 ◽  
Author(s):  
SM Bromfield ◽  
RW Cumming ◽  
DJ David ◽  
CH Williams

Changes in soil pH, manganese and aluminium as a result of long periods under subterranean clover pasture were examined in soils formed on granite, basalt and sedimentary rocks near Goulburn, New South Wales. Decreases in the pH of yellow duplex soils formed on granite, sedimentary rocks and basalt had occurred to depths of 60, 40 and 30 cm, respectively. The smaller depth of acidification in the latter two soils is considered to be due to their shallower A horizons over well buffered, clay B horizons. Under the oldest pastures (55 years) the decreases exceeded one pH unit throughout the entire sampled depth (60 cm). In some soils, under old improved pastures, calcium chloride-extractable manganese had increased to more than 20 ppm throughout the 60 cm profile and to greater than 50 ppm in the surface 10 cm. These levels are considered toxic to sensitive plant species and the highest levels may be toxic to subterranean clover. The amounts of extractable manganese in soils appear to be determined by both pH and the amounts of reactive manganese. In general, the amounts of total and reactive manganese were appreciably higher in the soils of basaltic origin. Substantial increases in extractable and exchangeable aluminium had also accompanied the decrease in pH and, in the surface 10 cm, were greatest in the soils formed on sedimentary parent materials. In many of the soils under old improved pastures, exchangeable aluminium, as a percentage of the effective cation exchange capacity, now exceeds 12%, especially in the 5-10 cm layer, and is probably harmful to sensitive species. Increases in exchangeable aluminium also occurred below the surface 10 cm and, in the granitic soils under the oldest pastures, exchangeable aluminium accounted for 30-50% of the effective cation exchange capacity throughout the 5-50 cm soil depth. The adverse changes in pH, manganese and aluminium observed in this study can be expected to continue under many improved pastures and to generate soil conditions unsuitable for many agricultural plants. The use of lime to arrest or reverse these changes seems inevitable.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 827-843 ◽  
Author(s):  
Sunday Adenrele Adeniyi ◽  
Willem Petrus de Clercq ◽  
Adriaan van Niekerk

Abstract. Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1–10, 11–40, and 41–80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.


2016 ◽  
Vol 47 (sup1) ◽  
pp. 75-89 ◽  
Author(s):  
Jorge Paz Ferreiro ◽  
Vicente Pereira De Almeida ◽  
Marlene Cristina Alves ◽  
Cleide Aparecida De Abreu ◽  
Sidney R. Vieira ◽  
...  

SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Alemayehu Adugna ◽  
Assefa Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent soil plots under different land uses, namely forestland, grazing land, and cultivated land at 0–15 cm depth. Changes in soil properties on cultivated and grazing land were computed and compared to forestland, and ANOVA (analysis of variance) was used to test the significance of the changes. Sand and silt proportions, soil organic content, total nitrogen content, acidity, cation exchange capacity, and exchangeable Ca2+ content were higher in forestlands. Exchangeable Mg2+ was highest in grazing land, while clay, available phosphorous, and exchangeable K+ were highest in cultivated land. The percentage changes in sand, clay, soil organic matter, cation exchange capacity, and exchangeable Ca2+ and Mg2+ were higher in cultivated land than in grazing land and forestland. In terms of the relation between soil properties, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable Ca2+ were strongly positively correlated with most of soil properties, while available phosphorous and silt have no significant relationship with any of the other considered soil properties. Clay has a negative correlation with all soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and available phosphorous, which suggests an increasing degradation rate in soils of cultivated land. So as to increase soil organic matter and other nutrients in the soil of cultivated land, the integrated implementation of land management through compost, cover crops, manures, minimum tillage, crop rotation, and liming to decrease soil acidity are suggested.


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 377 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser ◽  
M. H. Beare

Cultivation of grassland is known to lead to the depletion of soil organic matter (SOM), but the effect on the size and composition of the exchangeable cation suite has not been documented. We measured cation exchange capacity (CEC) and exchangeable cations (calcium, Ca; magnesium, Mg; potassium, K; sodium, Na), as well as soil carbon (C) and nitrogen (N) (0–7.5, 7.5–15, and 15–25 cm), 8 years after conversion of long-term ryegrass–white clover pasture (grazed by sheep) to annual crop production. The trial was near Lincoln, Canterbury, New Zealand. The trial included three tillage treatments: crops established using intensive cultivation (mouldboard ploughing), minimum tillage (shallow cultivation, ~10 cm), or no-tillage. The 8-year rotation was barley, wheat, pea, barley, pea, barley, barley, barley. A sheep-grazed pasture was maintained as an experimental control. The experiment also included a permanent fallow treatment (maintained plant-free using herbicides; not cultivated). After 8 years under arable cropping, soil C stocks (0–25 cm) were 10 t ha–1 less, on average, than under pasture. The vertical distribution of soil organic matter (SOM) was affected by tillage type, but the total amount of organic matter in the top 25 cm did not differ (P > 0.05) among the tillage treatments. Under permanent fallow (C loss of 13 t ha–1 relative to pasture), total exchangeable cation (Ca + Mg + K +Na) equivalents declined by 47 kmolc ha–1, a 20% decrease compared with pasture. Loss of exchange capacity resulted in the selective release of cations with lower affinity for SOM (K, Na, Mg). Smaller losses of exchangeable cations were recorded under the arable cropping rotation (average 31 kmolc ha–1), with no differences among tillage treatments. Effective CEC (at field pH) decreased under permanent fallow and cultivated treatments because of: (1) depletion of SOM (direct effect); and (2) soil acidification, which eliminated some of the remaining exchange sites (indirect effect). Acidification in the permanent fallow can be attributed to the N mineralisation process, whereas in the cropped systems, excess cation removal in harvested straw and grain accounted for about half of the measured acidification. There was evidence that the organic matter lost under arable cropping and fallow had lower CEC than SOM as a whole.


Sign in / Sign up

Export Citation Format

Share Document