Change in soil pH, manganese and aluminium under subterranean clover pasture

1983 ◽  
Vol 23 (121) ◽  
pp. 181 ◽  
Author(s):  
SM Bromfield ◽  
RW Cumming ◽  
DJ David ◽  
CH Williams

Changes in soil pH, manganese and aluminium as a result of long periods under subterranean clover pasture were examined in soils formed on granite, basalt and sedimentary rocks near Goulburn, New South Wales. Decreases in the pH of yellow duplex soils formed on granite, sedimentary rocks and basalt had occurred to depths of 60, 40 and 30 cm, respectively. The smaller depth of acidification in the latter two soils is considered to be due to their shallower A horizons over well buffered, clay B horizons. Under the oldest pastures (55 years) the decreases exceeded one pH unit throughout the entire sampled depth (60 cm). In some soils, under old improved pastures, calcium chloride-extractable manganese had increased to more than 20 ppm throughout the 60 cm profile and to greater than 50 ppm in the surface 10 cm. These levels are considered toxic to sensitive plant species and the highest levels may be toxic to subterranean clover. The amounts of extractable manganese in soils appear to be determined by both pH and the amounts of reactive manganese. In general, the amounts of total and reactive manganese were appreciably higher in the soils of basaltic origin. Substantial increases in extractable and exchangeable aluminium had also accompanied the decrease in pH and, in the surface 10 cm, were greatest in the soils formed on sedimentary parent materials. In many of the soils under old improved pastures, exchangeable aluminium, as a percentage of the effective cation exchange capacity, now exceeds 12%, especially in the 5-10 cm layer, and is probably harmful to sensitive species. Increases in exchangeable aluminium also occurred below the surface 10 cm and, in the granitic soils under the oldest pastures, exchangeable aluminium accounted for 30-50% of the effective cation exchange capacity throughout the 5-50 cm soil depth. The adverse changes in pH, manganese and aluminium observed in this study can be expected to continue under many improved pastures and to generate soil conditions unsuitable for many agricultural plants. The use of lime to arrest or reverse these changes seems inevitable.

1957 ◽  
Vol 8 (2) ◽  
pp. 179 ◽  
Author(s):  
CH Williams ◽  
CM Donald

A further investigation has been made on soils examined by Donald and Williams (1955) in a survey of the influence of superphosphate and subterranean clover (Trifolium subterraneum L.) on podzolic soils formed on granodiorite in the Crookwell district of New South Wales. The soil organic matter was found to have approximately constant proportions of carbon, nitrogen, sulphur, and phosphorus in the ratio 155 : 10 : 1.4 : 0.68, and it is suggested that the rate of build-up of soil organic matter under the clover pastures may have been limited by the amounts of sulphur supplied in the superphosphate top-dressings. The soil organic matter was found to have a cation-exchange capacity a t pH 7.0 of about 220 m-equiv./100 g, and increases in soil organic matter have led to substantial increases in the cation-exchange capacity of the soil. About 75 per cent. of the total cation-exchange capacity of the unimproved soils was due to organic matter while, in the most improved soils, this figure approached 90 per cent. The increases in cation-exchange capacity included increases in exchangeable hydrogen and were accompanied by decreases in soil pH. There were increases equivalent to 6.5 lb of exchangeable potassium, 25.5 Ib of exchangeable calcium, and 5.2 lb of exchangeable magnesium per acre in the surface 4 in. of soil for each hundredweight of superphosphate applied per acre. Increases in soil organic matter also resulted in increases in the field capacity which may reflect improvements in soil structure. Results indicate that heavier rates of superphosphate application would increase the rate of fertility build-up.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 539 ◽  
Author(s):  
CJ Chartres ◽  
RW Cumming ◽  
JA Beattie ◽  
GM Bowman ◽  
JT Wood

Samples were collected from unimproved road reserves and adjacent paddocks on a 90 km transect crossing red-brown earth soils in the west and red earth soils in the east. Measurements of pH in water and CaCl2 indicated that the red earths have been acidified by approximately 0.5 pH units over the last 30-40 years. Small increases in CaCl2-extractable A1 were also recorded for the acidified red earths. The red-brown earths do not appear to have been markedly affected by soil acidification to date. Clay mineralogical data and measurements of cation exchange capacity of the <2 �m fraction indicate that red-brown earths are better buffered against acidification than red earths. However, small differences in management practices and rainfall along the transect may also be partially responsible for differences in acidification between soil types.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


CATENA ◽  
2018 ◽  
Vol 167 ◽  
pp. 327-339 ◽  
Author(s):  
Magboul Sulieman ◽  
Ibrahim Saeed ◽  
Abdalhaleem Hassaballa ◽  
Jesús Rodrigo-Comino

2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


2004 ◽  
Vol 18 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Gregory W. Kerr ◽  
Phillip W. Stahlman ◽  
J. Anita Dille

Effects of soil pH and cation exchange capacity (CEC) on sunflower tolerance to sulfentrazone were investigated in a greenhouse study. Variables were soil pH (7.0, 7.3, 7.5, and 7.8), soil CEC (8.2, 13.7, 18.4, and 23.3 cmol/kg), and sulfentrazone rate (0, 105, 158, and 184 g ai/ha). Sulfentrazone-induced leaf chlorosis was affected by soil pH at 12 d after planting (DAP), but plants recovered, and earlier differences were not visible 9 d later. At 12 DAP, leaf chlorosis was 3 or 4% more severe in soils with pH 7.3 or higher compared with soils with pH 7.0 when averaged over both sulfentrazone rate and soil CEC. Leaf chlorosis resulting from sulfentrazone rates of 105, 158, and 184 g/ha was 17, 25, and 35% less at 23 cmol/kg than at 8.2 cmol/kg, respectively. Differences in chlorosis among sulfentrazone rates were greatest in soil with low CEC and lessened as soil CEC increased. Plants regained normal color over time, and newly emerging leaves were not affected. However, plant dry weights were reduced when sulfentrazone rate was ≥158 g/ha. Averaged over sulfentrazone rate and soil pH, sunflower dry weights were less when soil CEC was 8.2 compared with a CEC of 13.7 cmol/kg or higher, indicating a greater response at low CEC. Sunflower plant dry matter was not different in sulfentrazone-treated soil with a CEC above 13.7 cmol/kg. At the ranges tested, soil CEC had a considerably greater effect than did pH on sunflower tolerance to sulfentrazone.


2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.


2011 ◽  
Vol 6 (3) ◽  
Author(s):  
J. Zake ◽  
J. Y. Z. Kitungulu ◽  
H. Busurwa ◽  
F. Kyewaze

Wetlands are not wastelands but wealth lands, which are widely distributed throughout Uganda currently covering 11% of the total land area. They are accessible to a large proportion of the population. As the country's population grows, people increasingly convert wetlands for other land uses such as farming, settlement among others thus making it difficult to enforce legislation for their protection, sustainable management and utilization. Their profound importance to both humans and wildlife calls for a concerted effort to ensure their sustainable utilization and attempts should be made to promote sustainable development of such wetlands with adequate considerations being given to human and environmental requirements. This study was therefore carried out to determine the effect of drainage on organic matter levels and on soil chemical changes in wetland soils in eastern Uganda around the Lake Victoria basin. Secondly, to assess potential lime requirements for drained wetland soils in eastern Uganda around the Lake Victoria basin, this would reflect on wetland soil buffering capacity. In green house studies it was found that drainage of wetland soils led to a reduction of organic matter relative to soil structure and where sulfur and iron were present in large amounts, drainage caused decrease in soil pH to moderately acidic levels; but in cases where exchangeable bases were present in large amounts there was an increase in soil pH. Lime requirements were greater where the amount of clay, organic matter and cation exchange capacity were high. Consequently, such wetland soils had a high buffering capacity. It was concluded that wetland soils should be characterized in terms of potential of acidification, level of organic matter, nutrient content, cation exchange capacity, soil texture and levels of trace elements. Decisions to drain or not to drain should depend on these parameters and other socio-economic considerations for the area.


Sign in / Sign up

Export Citation Format

Share Document