The significance of petiole length, leaf area, and light interception in competition between strains of subterrranean clover (Trifolium subterraneum L.) grown in swards

1960 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
JN Black

Three strains of subterranean clover differing in leaf development were grown in pure swards and in all combinations in mixtures. The strain Yarloop has relatively few large leaves held on long petioles; Tallarook has many small leaves and short petioles; Bacchus Marsh is intermediate in all these respects. The swards were grown in boxes and were sampled on four occasions during the period of vegetative growth. Leaf area in each 2 cm layer of the sward was determined separately, and for both strains in the mixed swards, and measurements of the light intensity reaching each layer were obtained. Root weights were determined for all swards and separately for each component of the mixed swards. Examination of the dry weights showed that the growth of the strain having the lesser petiole elongation was suppressed. In the extreme instance Tallarook was so suppressed when grown with Yarloop that in the final inter-sampling period it grew completely in the dark, and lost about half its dry weight. Bacchus Marsh also suppressed Tallarook, but to a lesser extent, while Bacchus Marsh was itself suppressed in competition with Yarloop. The amount of light energy intercepted by the two components of the mixed swards was calculated from the leaf area and light profiles, and confirmed the importance of the spatial distribution of leaves in plant competition. It was concluded that, in the absence of defoliation, the success of a strain under competition was associated with its potential petiole elongation.

1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 541-547 ◽  
Author(s):  
Emilie E. Regnier ◽  
S. Kent Harrison

Lower leaves of greenhouse-grown common cocklebur and velvetleaf were shaded to 5% of full light over a 12-d period while upper leaves remained exposed to full light to determine weed foliar and branching responses to partial shading similar to that encountered in soybean crops. Shading increased lower leaf senescence and specific leaf area, and decreased branch length and number of second-order leaves in both species compared to unshaded controls. Common cocklebur branched more extensively along the lower portion of its stem than velvetleaf under both shaded and unshaded conditions. Upper leaves of partially shaded velvetleaf were held in a more perpendicular position to the light source beginning 3 days after treatment (DAT) compared to upper leaves of unshaded plants. Shading of lower leaves caused an increase in upper (unshaded) leaf area beginning 3 and 6 DAT in velvetleaf and common cocklebur, respectively. Petiole length of upper leaves also increased in response to shading in both species. Total plant dry weight at 12 DAT was unaffected by shading in velvetleaf but was reduced 10% by shading in common cocklebur. While common cocklebur maintained greater lower shoot growth in the presence of shade than velvetleaf, there was a greater change in upper leaf angle by velvetleaf in response to shading than by common cocklebur. These results support previous field observations of apparent greater shade tolerance of common cocklebur compared to velvetleaf and indicate that both species have the ability to compensate for shading of lower leaves by altering upper shoot growth.


1961 ◽  
Vol 12 (5) ◽  
pp. 810 ◽  
Author(s):  
JN Black

The Yarloop and Tallaroolr varieties of subterranean clover (Trifolium subterraneum L.) xvere grown in swards in six mixtures, varying from 100% Yarloop/0%, Tallarook to 0% Yarloop/100% Tallarook, to find out whether the suppression of Tallarook by Yarloop consequent upon the greater petiole elongation of yarloop would still occur when only a few Yarloop plants were present. The swards were grown in large seed boxes and were sampled on four occasions during vegetative growth. Leaf areas for each 2 cm layer of the swards were determined separately for the two strains, and light intensities at each layer were measured at each sampling occasion. It was shown that Yarloop plants suppressed Tallarook in all mixtures. The relative amounts of light energy available to the two strains in the mixed swards left no doubt that the suppression of Tallarook was the result of shading by the taller-growing Yarloop plants.


1963 ◽  
Vol 14 (2) ◽  
pp. 206 ◽  
Author(s):  
JN Black

This paper describes two experiments analysing the recovery from defoliation of subterranean clover varieties grown in swards in large seed boxes at the Waite Agricultural Research Institute, Adelaide. The first experiment examined the way in which the six common commercial varieties recovered from a single severe defoliation, and showed that under these conditions they can be placed in three groups: Yarloop and Clare are tall, high-yielding varieties with few, large leaves, recovering slowly from defoliation; Tallarook and Dwalganup are prostrate varieties, lower-yielding, with many small leaves, recovering rapidly after defoliation; Bacchus Marsh and Mount Barker are intermediate in all respects. In the second experiment mixed swards of equal numbers of Yarloop and Tallarook plants were grown under three treatments: A, no defoliation; B, defoliated twice at a height which removed the higher Yarloop canopy but left the lower Tallarook plants untouched; C, defoliated twice at a height which removed the canopies of both varieties. Measurement of dry weight on four occasions after each defoliation showed that in the undefoliated treatment, all Tallarook plants died by the end of the experiment. In the defoliated treatments, the removal of the Yarloop canopy resulted in only a temporary improvement in the illuniination in which the Tallarook plants grew, and their dry weight and plant numbers progressively declined. Dry weight changes in the Tallarook component were shown to be dependent on the light energy available to it, which was in turn determined by the light-absorbing capacity of the superior Yarloop canopy. In mixed swards, the ability of Yarloop to re-establish quickly a leaf canopy above that of Tallarook appeared to explain its success when defoliated.


1992 ◽  
Vol 43 (7) ◽  
pp. 1597 ◽  
Author(s):  
JM Wroth ◽  
RAC Jones

In 1989 and 1990, infection with subterranean clover mottle sobemovirus (SCMV) was widespread in subterranean clover ( Trifolium subterraneum L.) pastures in the south-west of Western Australia. The virus was detected in 61% of the pastures sampled and incidences of infection ranged from 1 to 50%. The virus was more common in old pastures than in pastures resown with newer cultivars during the preceeding 5 year period. When 12 isolates of SCMV were inoculated to subterranean clover plants grown in the glasshouse, symptoms varied from mild to severe. SCMV isolates P23 and F4 decreased the herbage dry weight of cw. Daliak and Woogenellup grown in plots as spaced plants by 81-88% while the Type isolate caused losses of 92%. By contrast, losses were 37-49% with cv. Karridale, a cultivar in which systemic infection was either delayed or prevented during winter. Infection decreased seed yield by c. 90% in cvv. Karridale and Woogenellup with all three isolates; seed weight was decreased 21-55%. A small proportion of cv. Woogenellup transplants outgrew the infection in new shoots during late spring to produce abundant healthy foliage. SCMV seed transmission rates in seed collected from infected transplants of cv. Woogenellup were 0.06, 0.07 and 0.43% for the Type, P23 and F4 isolates respectively. It was concluded that SCMV was present in most pastures, but at low incidences, and that it persists in them from year to year. Extended growing seasons and hard grazing are likely to increase its incidence.


1981 ◽  
Vol 32 (2) ◽  
pp. 257 ◽  
Author(s):  
DJ Reuter ◽  
AD Robson ◽  
JF Loneragan ◽  
DJ Tranthim-Fryer

Effects of severe and moderate copper deficiency on the development of leaves and lateral branches, on the distribution of dry weight within the plant, and on seed yield of Seaton Park subterranean clover were assessed as part of three glasshouse experiments. Copper deficiency markedly depressed top and root growth without producing any distinctive symptoms. It retarded phasic development by delaying development of leaves and lateral branches, senescence of plant parts, and flowering: it also depressed the proportion of stem plus petiole in plant tops and decreased internode elongation, pollen fertility and the number of burrs and seeds formed. As a result of its effect in delaying flowering, copper deficiency would depress seed production particularly strongly when low soil water supply shortens the growing season. The need for suitable procedures for diagnosing copper deficiency is emphasized by the lack of specific plant symptoms in this species.


1982 ◽  
Vol 33 (6) ◽  
pp. 989 ◽  
Author(s):  
DJ Reuter ◽  
JF Loneragan ◽  
AD Robson ◽  
D Plaskett

Effects of zinc supply on the distribution of zinc and dry weight among plant parts were examined during the first 55 days of vegetative development of Seaton Park subterranean clover grown in a zinc-deficient soil in a glasshouse. Symptoms of zinc deficiency first appeared in young trifoliate leaves. Zinc deficiency decreased the expansion of blades and petioles, delayed the development of leaves and lateral branches, depressed dry weights of roots and shoots, and increased the proportion of plant dry weight in roots and leaf blades. In each treatment and at each harvest, zinc concentrations varied widely amongst plant parts and with their physiological age. Plant parts also differed widely in the response of their dry matter and zinc concentrations to both zinc treatment and harvest time. It is suggested that these complex relationships explain why plant samples consisting of composite plant parts are not suitable for diagnosis of zinc deficiency. In the present experiment, zinc concentration in whole shoots was unsatisfactory for diagnosing zinc deficiency since concentrations were higher in young, zinc-deficient plants than in older, zinc-adequate plants. In young leaf blades of the same physiological age, zinc concentrations showed reasonably constant relationships with plant growth throughout the entire experiment. However, they varied two- to three-fold in leaves of different ages from the same plants. The results show the importance for diagnosis of zinc deficiency of selecting as a sample a single organ of defined physiological age. The youngest open leaf blade is recommended for diagnosis of zinc deficiency in subterranean clover.


1975 ◽  
Vol 26 (6) ◽  
pp. 975 ◽  
Author(s):  
RH Groves ◽  
JD Williams

Growth of skeleton weed (Chondrilla juncea, form A) and subterranean clover (Trifolium subterraneum) was studied in a glasshouse experiment in which the species were grown alone or together and the resultant effects of shoot and root competition assessed. The leaf number and weight of plant parts of C. juncea were reduced by competition vith subterranean clover, especially when shoots of the two species were competing. The leaf area of C. juncea was reduced, especially when roots of the two species were growing together. Puccinia chondrillina on C. juncea rosettes reduced leaf number, leaf area, and weight of plant parts. Subterranean clover grown with C. juncea infected with P. chondrillina further reduced the size and weight of the weed. The large reduction in leaf area and root weight of C. juncea (form A) plants in the presence of both subterranean clover and P. chondrillina suggests that growth of this form of C. juncea in Australia will be greatly reduced in pastures containing these species. In the long term, densities of this form may possibly be so lowered that a significant level of control will be reached in a cereal cropping-pasture system.


Sign in / Sign up

Export Citation Format

Share Document