The importance of liquid-seed contact during the germination of Medicago tribuloides Desr.

1963 ◽  
Vol 14 (5) ◽  
pp. 646 ◽  
Author(s):  
RH Sedgley

At a given matric potential, rates of uptake of water and rates of seed germination on a suction plate apparatus were increased by improving the degree of contact between liquid water and seed. The conclusion of Collis-George and Sands (1962) that small matric potentials, as such, influence the rate of seed germination is critically reviewed in the light of the present investigation. The rate of germination of seeds was not influenced by small pressure potentials, which like matric potentials are a non-osmotic component of the total water potential.

Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


2020 ◽  
Author(s):  
Adil Salman ◽  
Deep Joshi ◽  
Mahyar Naseri ◽  
Wolfgang Durner

<p>The measurement of the water potential is important to characterize solute transport in soil and water uptake by plants. Many researchers have characterized the matric potential and its impact on evaporation from porous media. However, only few studies have been carried out to characterize the effect of the osmotic potential. In this study, we investigated the simultaneous influences of the osmotic and matric potentials on the evaporation from soil. Our hypothesis was that both potential components affect the two stages of evaporation and that the osmotic potential in direct vicinity of the soil surface is a controlling variable. To meet our objective, we performed evaporation experiments on columns filled with pure quartz sand and natural soil materials with different textures, under climate-controlled laboratory conditions. The soils were initially saturated with different concentrations of saline solutions and evaporation from each column was measured daily. Our results show that the osmotic potential reduced the amount of evaporated water from the investigated porous media. The amount of reduction due to the osmotic potential is compared with model calculations that consider the total water potential at the soil surface.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1916
Author(s):  
Jose Beltrao ◽  
Gulom Bekmirzaev ◽  
Jiftah Ben Asher ◽  
Manuel Costa ◽  
Thomas Panagopoulos

A simple empirical approach is proposed for the determination of crop relative yield (%) through the soil total water potential (kPa). Recurring to decimal logarithms, from analytical exponential expressions, a linear simple relationship of soil total water potential Ψt (matric Ψm + potential Ψo) function and crop relative yield was studied and developed. The combination of the salinity model, the soil water retention model and the matric potential approach were used to reach this objective. The representation of turfgrass crop relative yield (%) versus a function of soil total water potential f(Ψt) values was shown through a log-normal graph (y = a + mx); the log scale axis “y” (ordinates) defines relative yield Yr, being two the origin ordinate “a” and “m” the slope; the normal decimal scale axis “x” (abscissa) is the function of soil total water potential f(Ψt). Hence, it is possible, using only two experimental points, to define a simple linear relation between a function of soil total water potential and crop relative yield, for a soil matric potential value lower than −20 kPa. This approach was first tested on golf courses (perennial turfgrass fields), but it was further decided to extend it to other annual crop fields, focused on the model generalization. The experimental plots were established, respectively, in Algarve, Alentejo and Oeiras (Portugal) and in the North Negev (Israel). Sprinkler and trickle irrigation systems, under randomized blocks and/or water and salt gradient techniques, were used for water application with a precise irrigation water and salt distribution. Results indicated that there is a high agreement between the experimental and the prediction values (R2 = 0.92). Moreover, the precision of this very simple and easy tool applied to turfgrass fields and other irrigated soils, including their crop yields, under several different sites and climatic conditions, can contribute to its generalization.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1 ◽  
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


2019 ◽  
Vol 33 (3) ◽  
pp. 372-394
Author(s):  
Dessireé Zerpa-Catanho ◽  
Andrés Hernández-Pridybailo ◽  
Viviana Madrigal-Ortiz ◽  
Adonay Zúñiga-Centeno ◽  
Carolina Porras-Martínez ◽  
...  

Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Erivelton S. Roman ◽  
A. Gordon Thomas ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

The ability to predict time of weed seedling emergence relative to the crop is an important component of a mechanistic model describing weed and crop competition. In this paper, we hypothesized that the process of germination could be described by the interaction of temperature and water potential and that the rate of seedling shoot and radicle elongation vary as a function of temperature. To test these hypotheses, incubator studies were conducted using seeds and seedlings of common lambsquarters. Probit analysis was used to account for variation in cardinal temperatures and base water potentials and to develop parameters for a new mathematical model that describes seed germination and shoot and radicle elongation in terms of hydrothermal time and temperature, respectively. This hydrothermal time model describes the phenology of seed germination using a single curve, generated from the relationship of temperature and water potential.


Irriga ◽  
2018 ◽  
Vol 1 (01) ◽  
pp. 246
Author(s):  
Lígia Borges Marinho ◽  
José Antonio Frizzone ◽  
João Batista Tolentino Júnior ◽  
Janaina Paulino ◽  
Danilton Luiz Flumigan ◽  
...  

DINÂMICA DA ÁGUA NO SISTEMA SOLO-PLANTA NO CULTIVO DA PIMENTA TABASCO SOB DÉFICIT HÍDRICO1  LÍGIA BORGES MARINHO2; JOSÉ ANTONIO FRIZZONE3; JOÃO BATISTA TOLENTINO JÚNIOR4; JANAÍNA PAULINO5; DANILTON LUIZ FLUMIGNAN6 E DIEGO BORTOLOTI GÓES3    (1) Artigo extraído da tese do primeiro autor (2) Departamento Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, av. Edgard Chastinet, São Geraldo, CEP 48905-680, Juazeiro, BA. Fone (74) 3611-7363. E-mail: [email protected](3) Departamento de Engenharia de Biossistemas/Escola Superior de Agricultura “Luiz de Queiroz” USP, Av. Pádua Dias, 11, CEP 13.418-900, Piracicaba/SP, E-mail(s): [email protected], [email protected]; (4) Campus Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, SC. [email protected] (5) Universidade Federal de Mato Grosso UFMT, campus Sinop, Avenida Alexandre Ferronato Nº 1.200. Bairro: Setor Industrial. CEP: 78.550-000,  Sinop-MT, Email: [email protected] (6) Empresa Brasileira de Pesquisa Agropecuária, Agropecuária Oeste. Rodovia BR 163, km 253, Zona Rural, 79804970 - Dourados, MS,  Email: [email protected]  1 RESUMO  O objetivo da pesquisa foi acompanhar a variação da condição hídrica do solo e da planta de pimenta ‘Tabasco’ em função dos manejos de déficits hídricos impostos e determinar seu coeficiente de estresse hídrico. O experimento foi conduzido em ambiente protegido, no Departamento de Engenharia de Biossistemas da ESALQ - USP, Piracicaba-SP, de setembro de 2009 a julho de 2010. O delineamento experimental foi blocos casualizados, com quatro repetições, utilizando-se lâminas de irrigação a 100, 80, 60 e 40% da evapotranspiração da cultura diferenciadas a partir da fase vegetativa e da fase reprodutiva. O potencial da água na folha e no solo foi aferido com a câmara de pressão e tensiômetros, respectivamente. Houve variação do potencial mátrico, da extração de água no solo e do potencial de água na folha em função das lâminas e das épocas de diferenciação. Menores potenciais mátricos foram verificados quando o déficit de irrigação foi inicializado na fase vegetativa da pimenta. Os valores de coeficiente de estresse hídrico e o potencial de água na folha, ao alvorecer, indicaram que as pimenteiras estavam sob estresse moderado e severo, sendo a época reprodutiva da pimenta Tabasco a mais sensível à restrição hídrica.Palavras-chave: Capsicum frutencens L, tensiômetro, potencial da água no solo.                                                        MARINHO, L. B.; FRIZZONE, J. A.; TOLENTINO JÚNIOR, J. B.; PAULINO, J.; FLUMIGNAN, D. L.; GÓES, D. B.WATER DYNAMICS IN SOIL-PLANT SYSTEM IN THE CULTIVATION OF PEPPER TABASCO UNDER WATER DEFICIT  2 ABSTRACT The objective of the research was to determine the change in soil water condition and in Tabasco pepper plant according to the managements of water deficits. The experiment was conducted in a greenhouse at the Department of Biosystems Engineering of ESALQ - USP, Piracicaba-SP, from September 2009 to July 2010. The experimental design was randomized blocks with four replications, using irrigation depths to 100, 80, 60 and 40% of crop evapotranspiration in the vegetative phase and reproductive phase. The soil matric potential was measured by tensiometers installed at 0-20 and 20-40 cm depth. The most negative values of matric potential occurred in treatments submitted to the greater water deficit treatments that had higher water restriction imposed by the vegetative phase. For these, greater increase in water extraction in the deepest layer (40 cm) were also found.There were differences in matric potential of the soil, in ground water extraction and in leaf water potential in relation to the water depths and differentiation phases. The deficit irrigation that started in the vegetative phase led to greater reduction in soil matric potential due to the accumulated water deficit. The pepper plants have moderate to severe sensitivity to water deficit in the soil, with a higher sensitivity of the plants when water restriction is imposed during reproductive stages than when it is imposed during growing stages. Keywords : Capsicum frutencens, tensiometer; soil water potential


2018 ◽  
Vol 10 (3) ◽  
pp. 102 ◽  
Author(s):  
Ícaro Vasconcelos do Nascimento ◽  
Raimundo Nonato de Assis Júnior ◽  
José Carlos de Araújo ◽  
Thiago Leite de Alencar ◽  
Alcione Guimarães Freire ◽  
...  

Soil water retention curve (SWRC) becomes important because it guides when and how much to irrigate, optimizing the use of water; can be obtained in the field or laboratory, being commonly determined in the laboratory with porous plate apparatus, and the determination is compromised by issues such as time and labor. In this context, inverse modeling emerges, which allows to obtain a variable going from the effect to the cause, using Hydrus-1D. Hence, this study aims to obtain van Genuchten equation parameters through inverse modeling with Hydrus-1D and make the respective comparisons and inferences. Matric potential data were obtained over time in an instantaneous profile-type experiment. Six sets of three tensiometers each were installed surrounding the center of the experimental plot, at depths of 0.20, 0.35 and 0.50 m. Target depth was 0.35 m, where the roots of most crops are concentrated, and the other tensiometers were used to obtain the potential gradient. Matric potential data were used to feed Hydrus-1D and obtain the van Genuchten equation parameters. Laboratory curves were obtained using porous plate apparatus, with four replicates. It was concluded that, in general, the Hydrus-1D model estimates van Genuchten equation parameters and, consequently, the SWCC of an Argissolo more consistently with field conditions than those obtained in the laboratory; and, provided it is fed with field data, the Hydrus-1D simulates well the behavior of matric potential and moisture over time, reducing the time and labor in the procedures to obtain van Genuchten equation parameters in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document