Effects of lime on the growth of five species, on aluminium toxicity, and on phosphorus availability

1971 ◽  
Vol 22 (5) ◽  
pp. 707 ◽  
Author(s):  
KR Helyar ◽  
AJ Anderson

Preliminary pot culture experiments indicated that the yield of phalaris relative to that of perennial ryegrass was poor on the less productive soils, particularly on some of the soils of pH <5.0 as measured in 115 soil/water suspensions. On an infertile acid soil with a high content of exchangeable aluminium, lucerne and phalaris plants responded to lime in pot experiments while subterranean clover, white clover, and perennial ryegrass were depressed by liming. The evidence, including that based on chemical analyses of extracted soil solutions and of lucerne plants, indicates that where adequate nitrogen had been applied, aluminium toxicity depressed the growth of lucerne and phalaris on this acid soil. The plant roots did not show the stunting which is obvious in cases of more severe aluminium toxicity. Subterranean clover, white clover, and perennial ryegrass resisted the toxicity. There was little evidence of a negative interaction between lime and phosphate on yields through their effects on aluminium toxicity. In general, responses to phosphate increased as the level of lime increased. Where suboptimal levels of nitrogen were applied there were responses to lime which were not clearly attributable to the alleviation of aluminium toxicity. Where nitrogen was adequate and there was no effect of lime in counteracting aluminium toxicity, in most cases lime caused a decrease in the concentration of phosphorus in the plants as well as a decrease in the yield. Lime also caused a decrease in the phosphorus level in the extracted soil solutions. However, in some cases where lime counteracted aluminium toxicity it increased the concentration of phosphorus in the tops of the plants. The significance of the results in relation to the problem of the diagnosis of aluminium toxicity is discussed.


1970 ◽  
Vol 21 (5) ◽  
pp. 677 ◽  
Author(s):  
KR Helyar ◽  
AJ Anderson

The growth responses of Lolium pevenne L. cv. Clunes, Phalavis tubevosa L. cv. Australian Commercial, Trifolium subterraneurn L. cv. Mount Barker, Trifolium vepens L. cv. Victorian, and Medicago sativa L. cv. Hunter River to lime, superphosphate, and nitrogen were compared in a field experiment on a soil with a pH of 4.9-5.4 (115 soil/water ratio) and with the cation exchange capacity 25-50% saturated by aluminium. The soil had a high phosphorus requirement. The effects of superphosphate and lime on the sodium bicarbonate extractable phosphorus levels and on the soil pH are discussed. Lucerne was one of the least productive species at most harvests. It required more superphosphate than subterranean clover, perennial ryegrass, or white clover to attain any given percentage of maximum yield. The visual symptoms of the plants and the yield interactions showed little evidence of effects of high aluminium, which indicated that the superphosphate was needed to correct phosphorus deficiency rather than to counteract any aluminium toxicity. The initial soil pH was somewhat higher than the levels previously found to be associated with aluminium toxicity on the soil in pots. Phalaris growth was increased to the highest superphosphate level, but growth at lower levels improved with time. Subterranean clover growth was depressed by the highest superphosphate level early in the season. The other species were not affected in this way. More lime was needed for lucerne than for white clover, which in turn needed more lime than subterranean clover. Nitrogen decreased the response of clover to lime, and the evidence indicates that the response of the legumes to lime was due mainly to the effect of lime in improving nodulation and nitrogen fixation. The lime-treated subterranean clover responded to nitrogen, especially in the first few months after sowing. The grasses responded markedly to nitrogen, while lime had a small effect on their growth and response to nitrogen. In no case did lime decrease the requirement for superphosphate.



2000 ◽  
Vol 53 ◽  
pp. 436-440 ◽  
Author(s):  
N.W. Waipara ◽  
S.K. Hawkins

A preliminary survey of pastures sprayirrigated with dairyshed effluent revealed a significant increase in the population of plant pathogenic Pythium species isolated from both soil and roots In vitro pathogenicity tests showed the majority of these isolates to be pathogenic when inoculated onto the seedlings of white clover subterranean clover and perennial ryegrass although both clover species were more susceptible to Pythiuminduced disease than ryegrass



1964 ◽  
Vol 15 (4) ◽  
pp. 609 ◽  
Author(s):  
KD Nicolls ◽  
JL Honeysett

In glass-house experiments, cobalt was added at rates corresponding to 18, 32, or 36 oz CoSO4.7H2O per acre to 27 soils, mostly krasnozems. This treatment raised the cobalt content of subterranean clover tops significantly on only 13 soils, and on only five of the 13 by more than 0.05 p.p.m. Cobalt in control plants ranged from 0.05 to 0.32 p.p.m. The largest recovery of applied cobalt, by two successive crops of subterranean clover, was 4% of that applied. Mechanical contamination of plant material was avoided by adding the cobalt before sowing the first crop. Perennial ryegrass and white clover gave similar results, over four or five harvests. The implications for the practice of top-dressing pastures with cobalt salts are discussed. Cobalt application at the 36 oz rate increased cobalt in subterranean clover more than the 18 oz on three of the four soils tested at the two rates. There was some evidence for a greater recovery of applied cobalt from the more acid soils, over a pH range of 4.9 to 6.2.



1974 ◽  
Vol 14 (66) ◽  
pp. 49 ◽  
Author(s):  
CR Kleinig ◽  
JC Noble ◽  
AJ Rixon

Herbage yield, herbage nitrogen, and soil nitrogen accumulation were followed over a five-year period (1958-63) under irrigated annual and perennial pastures established initially with different clovergrass proportions. Species sown in the annual pasture treatments were subterranean clover (Trifolium subterraneum cv. Tallarook) and annual ryegrass (Lolium rigidum cv. Wimmera). Those used in the perennial mixtures were white clover (T. repens cv. Irrigation) and perennial ryegrass (L. perenne cv. Victorian). In the treatments sown to annual or perennial ryegrass only, nitrogenous fertilizer as urea was applied annually at four rates. Total soil nitrogen (mat + 0-91 cm of soil) after five years did not differ significantly for annual pasture and bare ground. In contrast, total soil nitrogen under all perennial pasture treatments, particularly those with a white clover component, was significantly greater than for bare soil (5365 cf. 4181 kg ha-1). Where white clover was sown, nitrogen accumulated at the rate of 258 kg ha-1 per annum compared with 101 kg ha-1 per annum under subterranean clover, the latter barely matching the accumulation rate under perennial ryegrass sown alone without applied nitrogen (105 kg N ha-1 p.a.). Nitrogen accumulation (soil plus mat) was related to both legume and non-legume nitrogen. Perennial pasture, particularly if white clover was present, generally outyielded annual pasture. The total yield of white clover over five years was 29,970 kg ha-1 compared with 11,614 kg ha-1 for subterranean clover. Annual and perennial ryegrasses showed similar yield responses to applied nitrogen. Irrespective of the rate of urea application, nitrogen recovery was low (21-23 per cent).



1997 ◽  
Vol 48 (1) ◽  
pp. 31 ◽  
Author(s):  
S. J. McKirdy ◽  
R. A. C. Jones

Leaf samples of white clover were collected from 19 irrigated white clover (Trifolium repens) pastures in the south-west of Western Australia and tested for virus infection by enzyme-linked immunosorbent assay. Clover yellow vein virus (CYVV) was found in 16 pastures at infection levels of up to 23% and white clover mosaic virus (WCMV) in 10 at levels up to 83%. None of the white clover pastures with a high incidence of WCMV had been resown with white clover within the last 10 years, whereas those resown within the last 5 years had little or no infection. As previously reported in tests on different white clover pastures in the same irrigation area, widespread infection with alfalfa mosaic virus (AMV) and occasional infection with subterranean clover red leaf virus (SCRLV) was also found. Two or more viruses were found within 16 of the pastures with at least 3 having all 4 viruses. AMV and WCMV were detected in flatweed (Hypochaeris glabra) and AMV was detected in clustered dock (Rumex conglomeratus), both commonly occurring weeds in the pastures. In tests on the perennial ryegrass (Lolium perenne) component of 18 white clover pastures, infection with barley yellow dwarf virus was found in 14 at levels up to 5%. In addition, 11 of the pastures contained a virus which reacted with potyvirus-specific monoclonal antibodies, presumably ryegrass mosaic virus (RyMV), which was detected at levels up to 34%. Live aphids were trapped at 8 different times during 1995 in one pasture that was infected with WCMV, CYVV, AMV, and SCRLV. Blue-green aphid (Acyrthosiphon kondoi) and oat aphid (Rhopalosiphum padi) were the only species caught, both reaching peak populations in midwinter, but only the latter was found in summer. No virus transmission was detected when the aphids caught were fed individually on subterranean clover (T. subterraneum) indicator plants. It is concluded that WCMV poses a threat to the productivity of white clover within irrigated pastures, especially when present in mixed infection with AMV. CYVV is also commonly found but normally not at high enough incidences to pose a serious threat. RyMV may pose a threat to the productivity of the perennial ryegrass component within white clover-based pastures.



Agronomie ◽  
2003 ◽  
Vol 23 (5-6) ◽  
pp. 503-510 ◽  
Author(s):  
Florence Paynel ◽  
Jean Bernard Cliquet


Author(s):  
D.W.R. White

Cell culture and genetic engineering techniques can be used to develop improved pasture plants. To utilise these methods we have developed procedures for regenerating plants from tissue cultures of perennial ryegrass and white clover. In both, the plant genotype influences regeneration capacity. There was significant genetic variation among regenerated perennial ryegrass plants in a wide range of characteristics. Most of the regenerants were resIstant to crown rust and this trait was highly heritable. This rust resistance is being used to breed a new ryegrass cultivar. A system for introducing cloned genes into white clover is described. This capability is bemg used to incorporate genes with the potential to improve nutritional quality and pest resistance. Other possibilities for engineering genetic improvements in white clover, genes conferring herbicide tolerance and resistance to white clover mosaic virus, are briefly outlined. Keywords: Lolium perenne, Trifolium repens, cell culture, somaclonal variation, crown rust resistance, transformation, cloned genes, nutritional quality, proteinase inhibitors, Bt toxins, pest resistance, WCMV viral cross-protection, herbicide tolerance, Agrobacterium, Bacillus thuringenisis.



2016 ◽  
Vol 5 (07) ◽  
pp. 4694 ◽  
Author(s):  
Viliana Vasileva ◽  
Anna Ilieva

In pot trial the biochemical composition and phosphorus use efficiency of birdsfoot trefoil, sainfoin and subterranean clover grown pure and in mixtures with perennial ryegrass in the next ratios were studied in the Institute of Forage Crops, Pleven, Bulgaria: birdsfoot trefoil + perennial ryegrass (50:50%); sainfoin + perennial ryegrass (50:50%); subterranean clover + perennial ryegrass (50:50%); birdsfoot trefoil + subterranean clover + perennial ryegrass (33:33:33%); sainfoin + subterranean clover + perennial ryegrass (33:33:33%). The highest crude protein content was found in the aboveground mass of birdsfoot trefoil (19.17%) and sainfoin (19.30%). The water soluble sugars contents in mixtures was found higher compared to the pure grown legumes. Birdsfoot trefoil showed the highest phosphorus use efficiency for plant biomass accumulation and nodules formation. In mixtures the phosphorus use efficiency was found be higher as compared to the same in pure grown legumes.



2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.



Sign in / Sign up

Export Citation Format

Share Document