The effect of fallowing on the yield of wheat. II. The effect on grain yield

1978 ◽  
Vol 29 (4) ◽  
pp. 669 ◽  
Author(s):  
RJ French

The effect of fallowing on wheat yields is reported for a South Australian environment where 62% of the variation in yield is ascribed to water supply and where water use efficiency in grain production ranges from 1 to 11 kg/ha/mm. The mean yield response from a fallow (initial tillage 9 months before sowing) compared with a non-fallow (tillage 2 months before sowing) in 28 seasonal, site and fertility situations was 335 kg/ha and the maximum 875 kg/ha. Each additional millimetre of water stored through fallowing gave on average 8 kg grain per ha. Only fine-textured soils stored considerable water through fallowing. The additional nitrate in fallow gave yield responses when the non-fallow soil contained less than 70 kg nitrate nitrogen per ha, but only when water use by the crop exceeded 230 mm. The results are related to responses to fallowing obtained in other wheat-growing districts in Australia.


2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.



2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Rajesh Kumar Soothar ◽  
Ashutus Singha ◽  
Shakeel Ahmed Soomro ◽  
Azhar-u-ddin Chachar ◽  
Faiza Kalhoro ◽  
...  

Abstract Background Climate change and increasing demand in non-agricultural sectors profoundly affect the availability and quality of water resources for irrigated agriculture. The FAO AquaCrop simulation model provides a sound theoretical framework to investigate crop yield response to environmental stress. This model has successfully simulated crop growth and yield as influenced by varying soil moisture environments for crops. Integrating crop models that simulate the effects of water on crop yield with targeted experimentation can facilitate the development of irrigation strategies for high yield procurement and improving farm level water management and water use efficiency (WUE) under climatic condition of District Hyderabad, Sindh, Pakistan. Results This study was based on completely randomized block design with three treatments including T1 (30% soil moisture depletion), T2 (50% soil moisture depletion) and T3 (70% soil moisture depletion) with three replicates. In order to determine the crop water requirements under desired treatments, the gypsum blocks were used for computing the daily soil moisture depletion. The result shows that total volume of water applied to crop under T1, T2 and T3 was 9689, 5200 and 2045 m3 ha−1, respectively. As a result, the grain yield under T1, T2 and T3 was 13.2, 12.1 and 14.3 t ha−1, respectively. These results advocate that total yield of crop under T1 and T2 was less as compared to T3. The T3 gave higher yield and WUE compared than other treatments. On the other hand, results revealed that the simulated sunflower yields showed a good agreement with their measured under T3. The simulated grain yield was 15.5 t ha−1, while the measured yield varied from 12.1 to 14.3 t ha−1. This study suggested that WUE under T3 was more as compared to T1 and T2. The results showed that the T3 gave the highest crop yield in relation to WUE and optimize yield of sunflower crop under water scarcity. Conclusion The Aquacrop model could very well predict crop yield and WUE at T3 under experiential region for sunflower production.



2008 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Dong Pei ◽  
Yanmei Wang


1992 ◽  
Vol 32 (7) ◽  
pp. 963 ◽  
Author(s):  
WK Anderson ◽  
RJ French ◽  
M Seymour

A survey of experimental results relating crop management to grain yield was conducted for wheat and other crops on duplex and non-duplex soils in the wheatbelt of Western Australia. Increases in grain yield of wheat due to improved agronomic practices on duplex soils were almost as great as on other soils. Early sowing improved yield more on duplex soils than on other soils, but the response to applied nitrogen was more variable, possibly related to the reduced efficiency of uptake of applied nitrogen. The yield advantage for a semi-dwarf cultivar (Aroona) over a tall cultivar (Garnenya) was less (6%) on duplex soils than on other soils (29%). The optimum seed rate was 27% greater on duplex than on other soils. Increases in both grain yield and grain quality due to the application of potassium were large on 1 duplex soil. Water use efficiency in grain production was similar on duplex and other soils where seasonal water use did not exceed about 350 mm. At 1 location in the eastern wheatbelt, yields of wheat, barley, lupins and peas grown on a duplex soil were compared with yields on 2 other soils. Wheat was the most productive crop on the duplex soil, while barley yielded most on the other soils. All crops, except lupins, yielded less on the duplex soil. Experiments with 2 lupin cultivars grown on duplex and other soils on the south coast of Western Australia (average growing season rainfall >300 mm) showed that both cultivars yielded less on duplex soils, but 1 cultivar required slightly fewer plants to achieve its maximum yield on the duplex soils. This survey of experimental results in Western Australia shows that duplex soils are no less productive than other soils when results are averaged over all crops and locations. We conclude, however, that different management practices may be required to improve yields on duplex compared with other soils.



1992 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
WK Anderson

Factorial experiments were conducted at eight sites in the central wheatbelt of Western Australia over two seasons. Time of sowing (mid-May, early June), cultivar (old tall, new semi-dwarf), nitrogen (N) fertilizer (- or +) and amount of seed sown (low and high) were combined as treatments, and grain yield, yield components, biomass, grain quality, water use, soil chemical and weather variables were measured. The aim was to increase grain yield by combining relevant agronomic inputs and increasing the seasonal water use or water use efficiency. Grain yields were increased by from 30 to over 100% by the combination of mid-May sowing, semi-dwarf cultivar, N fertilizer and increased seed level (high-inputs) compared to early June sowing, old tall cultivar, without N and lower seed level (low-inputs). The yield improvements mostly came from increased dry matter production at anthesis, largely due to increased applications of N and seed. Ear and kernel numbers were also increased by earlier sowing and N fertilizer and to a lesser extent by cultivar and increased weight of seed sown. Water use was increased at most sites, especially in the post-anthesis period and water use efficiency of grain production was increased at all sites. Soil evaporation was reduced by the high-input treatments and the low-input treatments did not use water supplies of > 250 mm efficiently in grain production. It was concluded that appropriate combinations of cultivar and agronomic practices can increase grain yields linearly up to about 5 t ha-1 at seasonal water use of about 400 mm, even in situations where considerable water stress occurs during grain filling. Grain protein concentration was generally increased and hectolitre weight and small grain sievings were not adversely affected by increasing agronomic inputs.



2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.



Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 602
Author(s):  
Stavroula Tsitsifli ◽  
Anastasia Papadopoulou ◽  
Vasilis Kanakoudis ◽  
Konstantinos Gonelas

Water use efficiency is a crucial issue in drinking water utilities as it is connected to environmental and economic consequences. WATenERgy CYCLE project aims at developing a methodological approach towards efficient and effective transnational water and energy resources management in the Balkan–Mediterranean area. The paper presents the results of performance evaluation of the water supply systems of the water utilities involved in the project, both at local and national level. The methodology used in the water balance and performance indicators as well as data on the operational status of the water supply systems. The results showed that Non-Revenue Water is one of the major problems addressed.



Sign in / Sign up

Export Citation Format

Share Document