Agronomic potential of native grass species on the Northern Tablelands of New South Wales. II. Nutritive value

1988 ◽  
Vol 39 (3) ◽  
pp. 425 ◽  
Author(s):  
KA Archer ◽  
GG Robinson

The quality of three year-long green and three summer-growing, frost-susceptible perennial native grasses was compared with that of two introduced temperate perennial grasses and white clover (Trifolium repens L. cv. Haifa). Digestibility of white clover generally exceeded that of all grasses, except for the green leaves of the two introduced species, Festuca arundinacea Screb. cv. Demeter and Phalaris aquatica L. cv. Sirosa, during winter. The digestibility of the green leaves of most winter-green species increased during winter and decreased in summer, the extent of this being greater for the introduced grasses.The digestibility of fescue and phalaris was generally similar throughout the study and was mostly higher than that of the native grasses, but the quality of the green leaves of two year-long green native species, Danthonra linkii Kunth and Microlaena stipoides (Labill.) R.Br., approached that of the two introduced grasses. The quality of the summer perennial species was poor during winter owing to the presence of only dead leaves, but the green leaves of Bothriochloa macra (Steud) S. T. Blake retained high levels of digestibility during summer. Considerable variation in digestibility exists between individual plants of Poaseiberana Spreng, indicating that opportunities may exist for selection of highly productive lines from some native species.In pen-feeding studies, voluntary intake of most of the year-long green native grasses was similar to that of the introduced grasses, but intake of the summer perennial species tended to be lower.Results from this study indicate that the quality of native pastures and their potential for animal production will vary considerably according to species composition, season and the presence of white clover.

1988 ◽  
Vol 39 (3) ◽  
pp. 415 ◽  
Author(s):  
GG Robinson ◽  
KA Archer

The herbage mass and relative growth rate of six perennial native grasses were compared with two introduced temperate perennial grasses (Phalaris aquatica L. cv. Sirosa, Festuca arundinacea Schreb. cv. Demeter and the temperate legume, white clover (Trifolium repens L. cv. Haifa). Of the native grasses three were year-long green species (Danthonia linkii Kunth, Microlaena stipoides (Labill) R.Br., Poa seiberana Spreng), and three were summer-growing frost susceptible species (Themeda australia (R.Br.) Stapf, Sporobolus elongatus R. Br., Bothriochloa macra (Steud) S.T. Blake). The summer perennial species, in particular Bothriochloa, were highly productive. However, in addition to inability to produce or retain green herbage during the winter, the summer-growing perennials produced a lower proportion of leaf material, a feature likely to render them less acceptable for grazing. Themeda was an exception, and produced a high proportion of leaf throughout the growing season and retained green material longer into the winter. Among the yearlong green species, both native and introduced, Poa proved a most productive species with significantly higher green leaf production than any other species, both in terms of herbage mass and relative growth rate. Although Danthonia produced as much herbage as phalaris on an annual basis, it has a higher stem component overall, and its relative growth rate was higher in the warmer months and lower during the winter months. Only Poa, white clover and phalaris produced signficant amounts of herbage during the winter months. These data suggest that native species have valuable agronomic features which could be exploited by selection and plant breeding programmes to advantage by the grazing industry.


2005 ◽  
Vol 27 (2) ◽  
pp. 73 ◽  
Author(s):  
C. H. A. Huxtable ◽  
T. B. Koen ◽  
D. Waterhouse

Native grasses have an important role to play in mine rehabilitation throughout Australia, but there have been few scientifically designed studies of field establishment of native grasses from sown seed in this country. Current recommendations for rehabilitation of open-cut coal mines in the Hunter Valley involve the sowing of exotic pasture species to reinstate mined land to Class IV and V under the Rural Land Capability System. Despite the importance of native grasses in the pre-mined landscape, they are currently not widely included in mine rehabilitation. To address this issue a project was conducted between 1994 and 2000 to research the use of native grasses for rehabilitation of open-cut coal mines in the Hunter Valley. This paper reports on 2 mine site experiments that aimed to assess establishment and persistence of a broad range of native and exotic grass species from an autumn sowing in both topsoil and raw spoil over a period of 61 months. The most promising natives in terms of early establishment, persistence and spread over time, included six C3 accessions (five Austrodanthonia spp. and Austrostipa bigeniculata) and one C4 accession (Cynodon dactylon). Persistence of these accessions was better in raw spoil than topsoil, despite initial low numbers, due to a lack of weed competition and their ability to spread by self-seeding. In topsoil, and in the absence of any biomass reduction, native species were mostly out-competed by vigorous exotic perennial grasses which were sown in these experiments and from seed influx from adjacent rehabilitation areas or from the soil seed bank. The effects of climatic conditions and differences in soil physical, chemical and seed bank characteristics at the 2 mine sites are also discussed.


2021 ◽  
Vol 901 (1) ◽  
pp. 012007
Author(s):  
V M Kosolapov ◽  
V I Cherniavskih ◽  
E V Dumacheva ◽  
M N Marinich ◽  
L D Sajfutdinova ◽  
...  

Abstract We evaluated the stability of perennial legume and cereal grass species in artificial plant communities on permanent anti-erosion watercourses in the agroecosystems of the Belgorod region with active development of linear soil erosion. In the conditions of steppe and forest-steppe zones of the Belgorod region on permanently grassed watercourses in 2017-2019. varieties of perennial leguminous and cereal grasses: ‘Krasnoyaruzhskaya 1’ and ‘Krasnoyaruzhskaya 2’ (Medicago varia), ‘Kazatsky’ (Trifolium pratense), ‘Olshanka’ and ‘Ivica’ (Festuca arundinacea), ‘Streletsky’ and ‘Stepnyak’ (Lolium perenne)) obtained using local genetic material were studied. All varieties showed their resistance in agro-ecosystems with active development of linear erosion in the forest-steppe and steppe zones. Projective cover on watercourses in the steppe zone in all variants of experience was on average 83,4 %, in the forest-steppe zone - 86,3 %. In the third year of the tests on permanently irrigated watercourses in the steppe zone, the share of cereal and legume grass species was quite high and varied from 88 % in the variant M. varia + Onobrychis arenaria to 92 % in the variants M. varia + Bromopsis inermis and O. arenaria. In the forest-steppe zone, the share of cereal and legume grass species varied from 86 % in the variant L. perenne to 94 % in the variant L. perenne + B. inermis.


Author(s):  
T.L. Knight ◽  
R.A. Moss ◽  
T.J. Fraser ◽  
J.S. Rowarth ◽  
R.N. Burton

Increasing resistance of gastro-intestinal nematode parasites to anthelmintics and consumer resistance to the possibility of residues in animal products have prompted research on the effect of pasture species on nematodes and animal performance. Lambs (either infected with high rates of gastrointestinal nematodes or maintained nematode-free) were grazed on pure swards of chicory, high- or low-endophyte ryegrass, cocksfoot, tall fescue, lucerne, lotus, white clover or plantain. Infected lambs that grazed chicory had lower faecal egg counts and adult nematode populations, and higher carcass weights, than lambs grazed on plantain or the grass species; lambs that grazed legumes generally had intermediate counts, populations and weights. When kept parasite-free, carcass weights were up to 48% greater than in the nematodeinfected treatments. On farmlets run over 3 years, substituting 30% of the ryegrass area with lucerne or replacing the ryegrass with a multi-species mix consisting predominantly of bromes, tall fescue, phalaris, timothy and red and white clover, had no effect on gastrointestinal nematode larvae, lamb faecal worm egg or adult nematode numbers. It is concluded that a diet of pure chicory affects internal parasite populations but the small proportion included in the farmlet studies had no effect. Keywords: Cichorium intybus, Dactylis glomerota, Festuca arundinacea, gastro-intestinal nematodes, lambs, Lolium perenne, Lotus corniculatus, Medicago sativa, pasture species, Plantago lanceolata, Trifolium repens


Author(s):  
A.D. Black ◽  
R.J. Lucas

This experiment compared the productivity of caucasian or white clover when established with five perennial grass species over 6 years in a dry lowland environment. Hexaploid 'Endura' caucasian clover or 'Grasslands Demand' white clover were sown in December 1994 with high endophyte 'Yatsyn' perennial ryegrass, 'Grasslands Wana' cocksfoot, 'Grasslands Advance' tall fescue, 'Grasslands Gala' grazing brome, or 'Grasslands Maru' phalaris into a deep, fertile silt loam. Initial establishment of clovers was poor with ryegrass and grazing brome. Some volunteer white clover established in all 10 treatments. After the first 14 months, no irrigation was applied over the following 4 years. Sheep grazed plots about six times each year. The legume cover in 15-month-old pastures was higher when sown with white clover (29%) than caucasian clover (21%) but dry conditions during 1997/1998 (60% of 680 mm mean annual rainfall) and 1998/1999 (66% of mean rainfall) decreased the percentage of legume in white clover pastures. In February 1998 and March 1999, legume contributed 37% and 21% of the dry matter (DM) in caucasian clover pastures, but only 4% and 1% in pastures sown with white clover. Rainfall during the sixth season (1999/2000) was more favourable (111% of mean rainfall). Total DM production from July 1999 to June 2000 was 10.0 t DM/ha from caucasian clover pastures and 8.7 t DM/ha from pastures sown with white clover. The mean proportion of legume in white clover pastures ranged from 9% when sown with ryegrass and phalaris to 1% with cocksfoot. In contrast, mean caucasian clover legume contents were similar across all grass treatments at 20%, but reached 46% with cocksfoot during summer. It was concluded that caucasian clover is more tolerant of summer moisture stress than white clover when in association with perennial grass species. Keywords: botanical composition, Bromus stamineus, Dactylis glomerata, legume content, Lolium perenne, moisture stress, pasture production, Phalaris aquatica, Schedonorus phoenix syn. Festuca arundinacea, Trifolium ambiguum, T. repens


1988 ◽  
Vol 10 (1) ◽  
pp. 60 ◽  
Author(s):  
AM Holm ◽  
RJ Allen

This study was undertaken to assess whether the nutritional quality of spinifex pasture lands is improved by buming to promote the growth of grasses other than spinifex. We selected two comparable sites in the Exmouth Gulf region of Western Australia; one had been bumt in late 1979 and the other had not been burnt for many years. On these sites we sampled the five grass species present, as well as Triodia pungens (soft spinifex) and Plectrachne >chinzii (Oat eared spinifex) on 10 occasions from March 1980 to April 1982. Plant parts were analysed for nitrogen, phosphorus and sulphur content, and in vitro digestibility. None of the common grass species tested was more nutritious or more palatable than soft spinifex. It seems that little is gained from manipulating spinifex pastures through burning if the aim is to encourage alternative grass species. There is a need however for further studies into the importance of woody herbs and forbs in the nutrition of grazing animals on spinifex country and the effect of fire on these species.


2018 ◽  
Vol 11 (4) ◽  
pp. 201-207
Author(s):  
Parmeshwor Aryal ◽  
M. Anowarul Islam

AbstractForage kochia [Bassia prostrata(L.) A. J. Scott] is competitive with annual weeds and has potential for use in reclamation of disturbed land. However, land managers are reluctant to use forage kochia in revegetation programs due to lack of understanding of its compatibility with or invasiveness in the native plant community. We conducted two greenhouse experiments, one to compare the competitive effect of forage kochia versus perennial grasses on growth of cheatgrass (Bromus tectorumL.) and one to study the effect of forage kochia on growth of native perennial grasses. In the first experiment, a single seedling ofB. tectorumwas grown with increasing neighbor densities (0 to 5 seedlings pot−1) of either forage kochia, crested wheatgrass [Agropyron cristatum(L.) Gaertner ×A. desertorum(Fisch. ex Link) Schultes; nonnative perennial grass], or thickspike wheatgrass [Elymus lanceolatus(Scribn. & J. G. Sm.) Gould; native perennial grass].Bromus tectorumgrowth was reduced moderately by all three perennial neighbors, butA. cristatumandE. lanceolatushad more effect onB. tectorumwhen compared with forage kochia. This experiment was repeated and similar results were observed. In the second experiment, forage kochia was grown with each of four native cool-season grass species: basin wildrye [Leymus cinereus(Scribn. & Merr.) Á. Löve], bluebunch wheatgrass [Pseudoroegneria spicata(Pursh) Á. Löve],E. lanceolatus, and western wheatgrass [Pascopyrum smithii(Rydb.) Á. Löve]. Forage kochia had no effect on height, tiller number, and aboveground biomass of native grasses. Similarly, native grasses did not show a significant effect on forage kochia seedlings. This experiment was also repeated, and forage kochia somewhat reduced the aboveground biomass ofL. cinereusandP. spicata. However, all native grasses significantly reduced change in height, branching, and aboveground biomass of forage kochia. These results suggest that forage kochia interfered withB. tectorumseedling growth, but it showed little competitive effect on native grass seedlings.


2003 ◽  
Vol 54 (9) ◽  
pp. 903 ◽  
Author(s):  
S. P. Boschma ◽  
M. J. Hill ◽  
J. M. Scott ◽  
G. G. Rapp

A field experiment was conducted to study the effects of defoliation and moisture stresses on perennial pasture grasses and to identify traits associated with their resilience. The experiment, conducted near Armidale on the Northern Tablelands of NSW, studied 4 introduced perennial grass species (Phalaris aquatica, Festuca arundinacea, Dactylis glomerata, and Lolium perenne) and 2 native grass species (Microlaena stipoides and Austrodanthonia richardsonii) subjected to 3 moisture regimes (non-stress moisture, moderate drought, and severe drought) and 2 defoliation intensities (severe and moderate). Basal area, herbage mass, phenological growth stage, nitrogen concentration, root mass, and rooting depth were compared over 2 independent 6-month periods: spring–summer (1 September 1994–28 February 1995) and summer–autumn (1 December 1994–31 May 1995). Multiple regression was used to determine which traits were important for determining plant resilience.The differences between species and their respective responses were evident in the traits measured. In general, basal area tended to increase over summer and show little change during autumn. Severe defoliation stimulated plant growth, resulting in higher harvested herbage mass than from those moderately defoliated. Reproductive development was suppressed by severe drought and reduced by moderate drought. Severe defoliation suppressed flowering of Dactylis and Lolium at both drought intensities, compared with moderate defoliation. Phalaris, Festuca, and Austrodanthonia were the deepest rooting species during spring–summer, and Dactylis the shallowest. All species had similar rooting depths during summer–autumn, with those under severe and moderate drought having the deepest and shallowest rooting, respectively.Carbohydrate reserves and basal area were important traits for determining plant resilience during spring–summer. During summer–autumn, maintaining basal area and plant biomass through moderate grazing was important for resilience.


2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


Author(s):  
R.A. Moss ◽  
R.N. Burton ◽  
B.E. Allan

Grasslands Kara cocksfoot, Grasslands Nui ryegrass, Grasslands Roa tall fescue, Grasslands Gala grazing brome and Grasslands Maru phalaris were sown as single grass species with either white or Caucasian clover during December 1993, on a Lismore stony silt loam in Canterbury. Plots were irrigated and rotationally grazed by sheep. Total herbage produced during the first measurement period (September 1994 to July 1995) averaged 13.6 t DM/ha. All white clover-based swards produced similar yields, but with Caucasian clover, phalaris-based swards produced the most and ryegrass and grazing brome the least. Production tended to be lower from pastures sown with Caucasian than white clover (12.9 cf. 14.2,kg DM/ha). During the second measurement period (July 1995 to May 1996) total production was similar with both legumes. When evaluated over both measurement periods, phalaris and tall fescue gave the highest and cocksfoot and ryegrass the lowest production when sown with white clover, while cocksfoot and grazing brome were the lowestproducing swards with Caucasian clover. Ten --months-after-sow.ing,-white-cIover-contributed-in excess of40% of the DM in all swards except with ryegrass and grazing brome where it contributed 20%. The proportion of white clover then declined in all pastures over the following 20 months, ryegrass-based swards having the highest (10%) and cocksfoot the lowest (1%). When sown with Caucasian clover the legume content of swards increased during the 12 months from spring 1994 in swards containing phalaris, tall fescue and grazing brome. The proportion of legume in -cocksfoot swardsmdeclined-continuously from 22 to 4% over the 20 months while it increased continuously from 4 to 28% with ryegrass. The legume content in lo-month-old pastures was higher when sown with white than with Caucasian clover but this ratio was reversed by 28 months. This occurred with all pasture types but was most pronounced with ryegrass and cocksfoot pastures. The present experiment shows Caucasian clover can make a major contribution in irrigated pastures in Canterbury. 'Wattie Bush, RD 22, Peel Forest, Geruldine Keywords: Bromus stamineus, Dactylis glomerata, Festuca arundinacea, grazed pastures, herbage production, Lolium perenne, Phalaris aquatica, Trifolium ambiguum, Trifolium repens


Sign in / Sign up

Export Citation Format

Share Document