scholarly journals Low-Mass AGB Stellar Models for 0.003 ≤ Z ≤ 0.02: Basic Formulae for Nucleosynthesis Calculations

2003 ◽  
Vol 20 (4) ◽  
pp. 389-392 ◽  
Author(s):  
O. Straniero ◽  
I. Domínguez ◽  
S. Cristallo ◽  
R. Gallino

AbstractWe have extended our published set of low-mass AGB stellar modelsto lower metallicities. Different mass-loss rates have been explored. We provide interpolation formulae for the luminosity, effective temperature, core mass, mass of dredge up material and maximum temperature in the convective zone generated by thermal pulses. Finally, we discuss the resultant modification of these quantities when we use an appropriate treatment of the inward propagation of the convective instability, as caused by the steeprise in radiative opacity when the convective envelope penetratesthe H-depleted region.

1991 ◽  
Vol 145 ◽  
pp. 257-274
Author(s):  
Icko Iben

A brief review is given of the structure of asymptotic giant branch (AGB) stars and of the characteristics of the thermal pulses which these stars experience. Following a pulse, model AGB stars with a large core mass easily dredge up fresh carbon, which is the main product of incomplete helium burning, and s-process isotopes, which are made as a consequence of the activation of the 22Ne neutron source. Model AGB stars of small core mass activate the 13C neutron source and produce s-process isotopes in nearly the solar system distribution. They also dredge up fresh carbon and s-process isotopes, but only if overshoot or some other form of “extra” mixing beyond the lower boundary of the convective envelope is invoked.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Umberto Battino ◽  
Claudia Lederer-Woods ◽  
Borbála Cseh ◽  
Pavel Denissenkov ◽  
Falk Herwig

The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M⊙ < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M⊙=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 10−4 M⊙, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided.


2018 ◽  
Vol 620 ◽  
pp. A196 ◽  
Author(s):  
Leila M. Calcaferro ◽  
Alejandro H. Córsico ◽  
Leandro G. Althaus ◽  
Alejandra D. Romero ◽  
S. O. Kepler

Context. Some low-mass white-dwarf (WD) stars with H atmospheres currently being detected in our galaxy, show long-period g(gravity)-mode pulsations, and comprise the class of pulsating WDs called extremely low-mass variable (ELMV) stars. At present, it is generally believed that these stars have thick H envelopes. However, from stellar evolution considerations, the existence of low-mass WDs with thin H envelopes is also possible. Aims. We present a thorough asteroseismological analysis of ELMV stars on the basis of a complete set of fully evolutionary models that represents low-mass He-core WD stars harboring a range of H envelope thicknesses. Although there are currently nine ELMVs, here we only focus on those that exhibit more than three periods and whose periods do not show significant uncertainties. Methods. We considered g-mode adiabatic pulsation periods for low-mass He-core WD models with stellar masses in the range [0.1554–0.4352] M⊙, effective temperatures in the range [6000–10 000] K, and H envelope thicknesses in the interval −5.8 ≲ log(MH/M⋆)≲ −1.7. We explore the effects of employing different H-envelope thicknesses on the adiabatic pulsation properties of low-mass He-core WD models, and perform period-to-period fits to ELMV stars to search for a representative asteroseismological model. Results. We found that the mode-trapping effects of g modes depend sensitively on the value of MH, with the trapping cycle and trapping amplitude larger for thinner H envelopes. We also found that the asymptotic period spacing, ΔΠa, is longer for thinner H envelopes. Finally, we found asteroseismological models (when possible) for the stars under analysis, characterized by canonical (thick) and by thin H envelope. The effective temperature and stellar mass of these models are in agreement with the spectroscopic determinations. Conclusions. The fact that we have found asteroseismological solutions with H envelopes thinner than canonical gives a suggestion of the possible scenario of formation of these stars. Indeed, in the light of our results, some of these stars could have been formed by binary evolution through unstable mass loss.


2019 ◽  
Vol 15 (S354) ◽  
pp. 195-199
Author(s):  
A. Astoul ◽  
S. Mathis ◽  
C. Baruteau ◽  
F. Gallet ◽  
A. Strugarek ◽  
...  

AbstractFor the shortest period exoplanets, star-planet tidal interactions are likely to have played a major role in the ultimate orbital evolution of the planets and on the spin evolution of the host stars. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts the excitation, propagation and dissipation of tidal waves remains open. We have derived the magnetic contribution to the tidal interaction and estimated its amplitude throughout the structural and rotational evolution of low-mass stars (from K to F-type). We find that the star’s magnetic field has little influence on the excitation of tidal waves in nearly circular and coplanar Hot-Jupiter systems, but that it has a major impact on the way waves are dissipated.


1976 ◽  
Vol 72 ◽  
pp. 19-20
Author(s):  
R. Mäckle ◽  
H. Holweger ◽  
R. and R. Griffin

We have analysed the spectrum of Arcturus (K2 III) relatively to the Sun, using a differential technique employing empirical models for both stars. We derive an effective temperature of 4260 ± 50K and a surface gravity log g = +0.90 ±0.35; these in turn lead to a very low mass, in the range 0.1 to 0.6 M⊙. Elements are found to be underabundant by an average factor of 4 compared with the Sun. The abundance patterns in the two stars are significantly different, in keeping with the belief that Arcturus is a star of an older generation than the Sun. The carbon isotope ratio, which is as small as 5 or 6, shows that the atmospheric material of Arcturus has been processed through the CNO cycle, and theoretical arguments also indicate that Arcturus is somewhat evolved.


1996 ◽  
Vol 459 ◽  
pp. 298 ◽  
Author(s):  
Santi Cassisi ◽  
Vittorio Castellani ◽  
Amedeo Tornambe

2019 ◽  
Vol 633 ◽  
pp. A20 ◽  
Author(s):  
Leandro G. Althaus ◽  
Alejandro H. Córsico ◽  
Murat Uzundag ◽  
Maja Vučković ◽  
Andrzej S. Baran ◽  
...  

Context. The possible existence of warm (Teff ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g-mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes (MH/M⋆ ≲ 10−10). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M⊙ with H content in the range −14.5 ≲ log(MH/M⋆)≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log(MH/M⋆)≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs.


1984 ◽  
Vol 105 ◽  
pp. 3-19
Author(s):  
Icko Iben

Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22Ne(α, n)25Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13C(α, n) 16O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. After the dredge-up phase following each pulse, the 13C is made by the reactions 12C(p,γ) 13N(β+ v) 13C in a zone of large 12C abundance and small 1H abundance that has been established by semiconvective mixing during the dredge-up phase. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved.The observed paucity of AGB stars more luminous than MBOL ∼ −6 is interpreted to mean that the AGB lifetime of a star more luminous than this is at least a factor of ten smaller than the AGB lifetime of stars less luminous than this, or, at most 105 yr. Since, with current estimates of the 22Ne(α, n)25Mg reaction rate R22, only AGB model stars more luminous than MBOL ∼ −6 can produce s-process isotopes in the solar system distribution, it is inferred that either (1) the current estimates of R22 are too small by one to two orders of magnitude, allowing less luminous AGB stars to contribute, (2) the solar system distribution is not equivalent to the average Galactic distribution, being rather the consequence of a unique injection into the protosolar nebula of matter from a massive intermediate-mass AGB star, or (3) the estimates of the temperatures in the convective shell that are given by extant models are too low by, sav, 10 or 15 percent.The absence of carbon stars more luminous than MBOL ∼ −6 is suggested to be due primarily to the fact that ∼ 106 yr of AGB evolution is necessary to produce surface C/O > 1, rather than to be due to the burning of dredged-up carbon into nitrogen at the base of the convective envelope during the interpulse quiescent hydrogen-burning phase. Thus, the positive correlation between the nitrogen and helium abundances in planetary nebulae is perhaps primarily a consequence of the second dredge-up episode rather than a consequence of processes occurring during the thermally pulsing phase.


Sign in / Sign up

Export Citation Format

Share Document