scholarly journals Heavy Element Abundances in Planetary Nebulae: A Theorist's Perspective

2010 ◽  
Vol 27 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Amanda I. Karakas ◽  
Maria Lugaro

AbstractThe determination of heavy element abundances from planetary nebula (PN) spectra provides an exciting opportunity to study the nucleosynthesis occurring in the progenitor asymptotic giant branch (AGB) star. We perform post-processing calculations on AGB models of a large range of mass and metallicity to obtain predictions for the production of neutron-capture elements up to the first s-process peak at strontium. We find that solar metallicity intermediate-mass AGB models provide a reasonable match to the heavy element composition of Type I PNe. Likewise, many of the Se and Kr enriched PNe are well fitted by lower mass models with solar or close-to-solar metallicities. However, those objects most enriched in Krand those PN with sub-solar Se/O ratios are difficult to explain with AGB-nucleosynthesis models. Furthermore, we compute s-process abundance predictions for low-mass AGB models of very low metallicity ([Fe/H]≈−2.3) using both scaled solar and an α-enhanced initial composition. For these models, O is dredged to the surface, which means that abundance ratios measured relative to this element (e.g. X/O) do not provide a reliable measure of initial abundance ratios, or of production within the star owing to internal nucleosynthesis.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 164-165
Author(s):  
Carolyn Doherty ◽  
John Lattanzio ◽  
George Angelou ◽  
Simon W. Campbell ◽  
Ross Church ◽  
...  

AbstractThe Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ≈ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89
Author(s):  
Efrat Sabach

We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0 . 001 and Z = 0 . 004 , and compare with the evolution with solar metallicity, Z = 0 . 02 . We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function.


2019 ◽  
Vol 622 ◽  
pp. A159 ◽  
Author(s):  
Andreas Koch ◽  
Moritz Reichert ◽  
Camilla Juul Hansen ◽  
Melanie Hampel ◽  
Richard J. Stancliffe ◽  
...  

Metal-poor stars in the Galactic halo often show strong enhancements in carbon and/or neutron-capture elements. However, the Galactic bulge is notable for its paucity of these carbon-enhanced metal-poor (CEMP) and/or CH-stars, with only two such objects known to date. This begs the question whether the processes that produced their abundance distribution were governed by a comparable nucleosynthesis in similar stellar sites as for their more numerous counterparts in the halo. Recently, two contenders of these classes of stars were discovered in the bulge, at [Fe/H] = −1.5 and −2.5 dex, both of which show enhancements in [C/Fe] of 0.4 and 1.4 dex (respectively), [Ba/Fe] in excess of 1.3 dex, and also elevated nitrogen. The more metal-poor of the stars can be well matched by standard s-process nucleosynthesis in low-mass asymptotic giant branch (AGB) polluters. The other star shows an abnormally high [Rb/Fe] ratio. Here, we further investigate the origin of the abundance peculiarities in the Rb-rich star by new, detailed measurements of heavy element abundances and by comparing the chemical element ratios of 36 species to several models of neutron-capture nucleosynthesis. The i-process with intermediate neutron densities between those of the slow (s-) and rapid (r)-neutron-capture processes has been previously found to provide good matches of CEMP stars with enhancements in both r- and s-process elements (class CEMP-r/s), rather than invoking a superposition of yields from the respective individual processes. However, the peculiar bulge star is incompatible with a pure i-process from a single ingestion event. Instead, it can, statistically, be better reproduced by more convoluted models accounting for two proton ingestion events, or by an i-process component in combination with s-process nucleosynthesis in low-to-intermediate mass (2–3 M⊙) AGB stars, indicating multiple polluters. Finally, we discuss the impact of mixing during stellar evolution on the observed abundance peculiarities.


2011 ◽  
Vol 7 (S283) ◽  
pp. 502-503
Author(s):  
Richard A. Shaw ◽  
Ting-Hui Lee ◽  
Letizia Stanghellini ◽  
James E. Davies ◽  
D. Anibal García-Hernández ◽  
...  

AbstractWe determine elemental abundances of He, N, O, Ne, S, and Ar in Magellanic Cloud planetary nebulae (PNe) using direct methods and a large set of observed ions, minimizing the need for ionization correction factors. In contrast to prior studies, we find a clear separation between Type I and non-Type I PNe in these low-metallicity environments, and no evidence that the O-N nucleosynthesis cycle is active in low-mass progenitors. We find that the S/O abundance ratio is anomalously low compared to H ii regions, confirming the “sulfur anomaly” found for Galactic PNe. We also found that Ne/O is elevated in some cases, raising the possibility that Ne yields in low-mass AGB stars may be enhanced at low metallicity.


2009 ◽  
Vol 26 (3) ◽  
pp. 322-326 ◽  
Author(s):  
M. Lugaro ◽  
S. W. Campbell ◽  
S. E. de Mink

AbstractCarbon-enhanced metal-poor (CEMPs+r) stars show large enhancements of elements produced both by the slow and the rapid neutron capture processes (the s and r process, respectively) and represent a relatively large fraction, 30% to 50%, of the CEMP population. Many scenarios have been proposed to explain this peculiar chemical composition and most of them involve a binary companion producing the s-process elements during its Asymptotic Giant Branch (AGB) phase. The problem is that none of the proposed explanations appears to be able to account for all observational constraints, hence, alternatives are needed to be put forward and investigated. In this spirit, we propose a new scenario for the formation of CEMPs+r stars based on S. W. Campbell's finding that during the ‘dual core flash’ in low-mass stars of extremely low metallicity, when protons are ingested in the He-flash convective zone, a ‘neutron superburst’ is produced. Further calculations are needed to verify if this neutron superburst could make the r-process component observed in CEMPs+r, as well as their Fe abundances. The s-process component would then be produced during the following AGB phase.


2016 ◽  
Vol 822 (2) ◽  
pp. 73 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

1998 ◽  
Vol 11 (1) ◽  
pp. 53-57
Author(s):  
Robert P. Kraft

Only a bit more than 25 years ago, it seemed possible to assume that all Galactic globular clusters were chemically homogeneous. There were indications that star-to-star Fe abundance variations existed in ω Cen, but this massive cluster appeared to be unique. Following Osborn’s (1971) initial discovery, Zinn’s (1973) observation that M92 asymptotic giant branch (AGB) stars had weaker G-bands than subgiants with equivalent temperatures provided the first extensive evidence that there might be variations in the abundances of the light elements in an otherwise “normal” cluster. Since then star-to-star variations in the abundances of C, N, O, Na, Mg and Al have been observed in all cases in which sample sizes have exceeded 5-10 stars, e.g., in clusters such as M92, M15, M13, M3, ω Cen, MIO and M5. Among giants in these clusters one finds large surface O abundance differences, and these are intimately related to differences of other light element abundances, not only of C and N, but also of Na, Mg and Al (cf. reviews by Suntzeff 1993, Briley et al 1994, and Kraft 1994). The abundances of Na and O, as well as Al and Mg, are anticorrelated. Prime examples are found among giants in M15 (Sneden et al 1997), M13 (Pilachowski et al 1996; Shetrone 1996a,b; and Kraft et al 1997) and ω Cen (Norris & Da Costa 1995a,b). These observed anticorrelations almost certainly result from proton- capture chains that convert C to N, 0 to N, Ne to Na and Mg to Al in or near the hydrogen fusion layers of evolved cluster stars. But which stars? An appealing idea is that during the giant branch lifetimes of the low-mass stars that we now observe, substantial portions of the stellar envelopes have been cycled through regions near the H-burning shell where proton-capture nucleosynthesis can occur. This so-called “evolutionary” scenario involving deep envelope mixing in first ascent red giant branch (RGB) stars has been studied by Denissenkov & Denissenkova (1990), Langer & Hoffman (1995), Cavallo et al (1996, 1997) and Langer et al (1997). The mixing mechanism that brings proton-capture products to the surface is poorly understood (Denissenkov & Weiss 1996, Denissenkov et al 1997, Langer et al 1997), but deep mixing driven by angular momentum has been suggested (Sweigart & Mengel 1979, Kraft 1994, Langer & Hoffman 1995, Sweigart 1997).


2014 ◽  
Vol 790 (1) ◽  
pp. 22 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

2009 ◽  
Vol 26 (3) ◽  
pp. 139-144 ◽  
Author(s):  
S. Cristallo ◽  
L. Piersanti ◽  
O. Straniero ◽  
R. Gallino ◽  
I. Domínguez ◽  
...  

AbstractIn this paper we present the evolution of a low-mass model (initial mass M = 1.5 M⊙) with a very low metal content (Z = 5 × 10−5, equivalent to [Fe/H] = –2.44). We find that, at the beginning of the Asymptotic Giant Branch (AGB) phase, protons are ingested from the envelope in the underlying convective shell generated by the first fully developed thermal pulse. This peculiar phase is followed by a deep third dredge-up episode, which carries to the surface the freshly synthesized 13C, 14N and 7Li. A standard thermally pulsing AGB (TP-AGB) evolution then follows. During the proton-ingestion phase, a very high neutron density is attained and the s process is efficiently activated. We therefore adopt a nuclear network of about 700 isotopes, linked by more than 1200 reactions, and we couple it with the physical evolution of the model. We discuss in detail the evolution of the surface chemical composition, starting from the proton ingestion up to the end of the TP-AGB phase.


2009 ◽  
Vol 26 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Larry R. Nittler

AbstractPresolar grains in meteorites formed in a sample of Asymptotic Giant Branch (AGB) stars that ended their lives within ≈1 Gyr of the origin of the Solar System 4.6 Gyr ago. The O-isotopic compositions of presolar O-rich stardust reflect the masses and metallicities of their parent stars. We present simple Monte Carlo simulations of the parent AGB stars of presolar grains. Comparison of model predictions with the grain data allow some broad conclusions to be drawn: (1) Presolar O-rich grains formed in AGB stars of mass ∼1.15–2.2 M⊙. The upper-mass cutoff reflects dredge-up of C in more massive AGB stars, leading to C-rich dust rather than O-rich, but the lack of grains from intermediate-mass AGB stars (>4 M⊙) is a major puzzle; (2) The grain O-isotopic data are reproduced well if the Galaxy in presolar times was assumed to have a moderate age-metallicity relationship, but with significant metallicity scatter for stars born at the same time; (3) The Sun appears to have a moderately low metallicity for its age and/or unusual 17O/16O and 18O/16O ratios for its metallicity; and (4) The Solar 17O/18O ratio, while unusual relative to present-day molecular clouds and protostars, was not atypical for the presolar disk and does not require self-pollution of the protosolar molecular cloud by supernova ejecta.


Sign in / Sign up

Export Citation Format

Share Document