scholarly journals Day-Length Control of Inflorescence Initiation in the Grass Rottboellia Exaltata L.F.

1962 ◽  
Vol 15 (2) ◽  
pp. 291 ◽  
Author(s):  
LT Evans

R. exaltata is a strict short�day plant with a critical photoperiod of about 13 hr. The number of short days required for inflorescence initiation varies with age, being 6 with plants 5 weeks old. Exposure to additional short days increases the rate of inflorescence development. The expanding leaf is the one most sensitive to short.day induction and removal of the leaves below it accelerates inflorescence development.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0240390
Author(s):  
Hongxu Dong ◽  
Lindsay V. Clark ◽  
Xiaoli Jin ◽  
Kossonou Anzoua ◽  
Larisa Bagmet ◽  
...  

Miscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


1987 ◽  
Vol 14 (3) ◽  
pp. 277 ◽  
Author(s):  
LT Evans

Experiments in the Canberra phytotron with several European winter wheat varieties, especially cv. Templar, have shown that their need for vernalisation at low temperature can be replaced entirely by growth in short days at 21/16°C for the same period. In fact, although wheat is usually classified as a long day plant, inflorescence initiation at 21/16°C in unvernalised plants was twice as rapid in 8 h photoperiods as in 16 h ones. Short day induction was fastest in photoperiods of less than 12 h and was relatively insensitive to irradiance. Inflorescence development following initiation was faster the longer the photoperiod. At high irradiance, anthesis eventually occurred in 8 h days, but not at lower irradiance. These wheats are therefore short-long day plants, and may appear to be indifferent to daylength if only their time to anthesis is observed. Although short days can replace low temperatures, there are several important differences in their modes of action, and short day induction is better not referred to as short day vernalisation. Vernalisation of developing grains in the ear was more effective in long days.


2005 ◽  
Vol 83 (10) ◽  
pp. 1271-1278 ◽  
Author(s):  
L M Pyter ◽  
Z M Weil ◽  
R J Nelson

Animals use day length (photoperiod) to time seasonal adaptations to annual changes in their environment. Reproductive adjustments in deer mice (Peromyscus maniculatus (Wagner, 1845)) from high latitudes are more extensive in response to short days than in deer mice from low latitudes. These adjustments may permit individuals to survive the severe seasonal changes (e.g., temperature and food abundance) in high-latitude environments. Immune function is also affected by photoperiod. Short days were predicted to result in elevated immune and reproductive responses in meadow voles (Microtus pennsylvanicus (Ord, 1815)) from the Northwest Territories (NWT), Canada (~62°N), compared with voles from Ohio (OH), USA (~39°N). Male voles from both latitudes were maintained in long or short days for 10 weeks prior to a delayed-type hypersensitivity (DTH) immune challenge. Both populations displayed similar testicular regression and reduction of testosterone concentrations in short days. DTH immune responses, however, diverged between the two populations. DTH immune responses were enhanced in long-day NWT voles and short-day OH voles, but decreased in short-day NWT voles and long-day OH voles. Total and free corticosterone concentrations did not explain the latitudinal differences in immune responses. These results suggest that photoperiod affects reproductive and immune systems differently and that immune responses may reflect other environmental factors.


1973 ◽  
Vol 51 (1) ◽  
pp. 23-26 ◽  
Author(s):  
W. E. Sackston ◽  
J. W. Sheppard

Symptoms of Verticillium wilt on inoculated plants of the sunflower cultivar Sunrise appeared sooner and were more severe under long days (16 h light, 8 h dark), or short days with interrupted dark period (10 h light, [Formula: see text] dark, [Formula: see text] light, [Formula: see text] dark), than under short days (10 h light, 14 h dark). Uninoculated control plants flowered in 45 to 47 days under short-day conditions, but reached only the yellow bud stage in 50 to 55 days under long days or short days with interrupted dark period. Development of Verticillium wilt of sunflower is not dependent on the initiation of flowering as it is in some other hosts.


Reproduction ◽  
2005 ◽  
Vol 129 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Leah M Pyter ◽  
Andrew K Hotchkiss ◽  
Randy J Nelson

Non-pathological angiogenesis in adults is rare and is largely thought to be restricted to wound healing and female reproductive cycles. Adult male rodents, however, display seasonal angiogenesis to support seasonal changes in reproductive tissue morphology. Non-tropical rodents use photoperiod (day length) to determine the time of year. During short days, the reproductive system undergoes involution and mating behaviours stop, adaptations which presumably allow energy resources to be shifted to processes necessary for winter survival. We compared the patterns of gene expression involved in angiogenesis in testes of white-footed mice (Peromyscus leucopus) following 7, 14, 21 or 34 weeks of long or short day lengths. Short days decreased body mass, reproductive tract mass and seminiferous tubule diameter. Potential genes involved in seasonal angiogenesis were screened by hybridizing testicular RNA from each group to angiogenesis-specific microarrays. Genes that were ≥6-fold different between long- and short-day testes (i.e. hypoxia-inducible factor 1α(Hif1α), plasminogen activator inhibitor 1 (Serpine1), transforming growth factor β receptor 3 (Tgfβr3) and tumour necrosis factor (Tnf)) were sequenced and expression differences were compared throughout gonadal regression and recrudescence using quantitative RT-PCR. Our results suggest that short days trigger expression ofHif1α,Serpine1, andTgfβr3to inhibit angiogenesis or promote apoptosis during testicular regression, and also trigger expression ofTnfto promote angiogenesis during testicular recrudescence.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 849C-849
Author(s):  
Victoria L. Davidson* ◽  
Dean A. Kopsell ◽  
James E. Pollard

Experiments were conducted to investigate the potential effect on floral bud initiation in strawberry (Fragaria × ananasa, cv. Chandler) by interrupting inductive short day cycles with a day-length extension treatment. Vegetative plants were exposed to 10-, 15-, or 20-day cycles of inductive short days in growth chambers. After receiving an inductive short day treatment plants were transferred to a greenhouse where they were exposed to non-inductive long days, which stimulated panicle elongation. Dissections of apical meristems immediately following each cycle of short days revealed that cycles of 20 days resulted in detectable floral bud formation. After 15 days in the greenhouse, all short day treatments had initiated floral buds. In the greenhouse, under long days, subsequent flowering in cohorts of plants which had previously received inductive short days showed a positive correlation between interruption of short days with day length extension and reduction in the number of floral buds initiated on earliest emerging panicles. These results suggest potential for manipulation of floral bud induction and potentially fruit size in Chandler, and perhaps other cultivars by interruption of a cycle of inductive short days with a day length extension treatment.


1988 ◽  
Vol 255 (5) ◽  
pp. R831-R838 ◽  
Author(s):  
T. M. Lee ◽  
I. Zucker

Vole pups were maintained from the time of conception in the same short-day (SD) photoperiod (10 h light/day, LD 10:14); groups differed only with respect to SD photoperiodic histories of dams before gestation, which simulated those experienced by dams breeding in autumn (SD-2, 2 wk of short days), midwinter (SD-21), or late winter (SD-26). Compared with SD-2 pups, offspring born to SD-26 dams matured more rapidly with respect to body size and reproductive status. Several other somatic and behavioral measures indicated that winter preparedness was greatest in pups whose dams had experienced 2 wk and least in those that had experienced 26 wk of SD treatment before conception. A cross-fostering design, in which pups gestated in long (LD 14:10) or short photoperiods were reared postnatally in the same or opposite day length, indicated that several photoresponsive traits are influenced predominantly by prenatal photoperiod, others by postnatal day length, and others by both photoregimens. Information is communicated to fetuses about the length of time dams have been exposed to short day lengths before mating as well as about the day length prevailing during gestation. The changes induced by the mother in her pups pre- and postnatally likely facilitate adaptation of newly weaned voles to seasonally varying environmental conditions.


2020 ◽  
Author(s):  
Hongxu Dong ◽  
Lindsay V. Clark ◽  
Xiaoli Jin ◽  
Kossonou Anzoua ◽  
Larisa Bagmet ◽  
...  

AbstractMiscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


2008 ◽  
Vol 86 (10) ◽  
pp. 1212-1216
Author(s):  
Zachary M. Weil ◽  
Michelle Gatien Hotchkiss ◽  
Randy J. Nelson

Small mammals use day length to adjust morphology and physiology to anticipate seasonal changes in environmental conditions. The canonical photoperiod-mediated annual adaptation is seasonal breeding. However, increasing evidence suggests that day-length information can induce plasticity in the nervous system, and thus provoke behavioral plasticity that can aid in winter survival. We hypothesized that low temperatures and reduced food availability in the winter would necessitate the evolution of increased pain tolerance mediated by short day lengths. Siberian hamsters ( Phodopus sungorus (Pallas, 1773)) housed in short days regressed their reproductive tracts and molted to winter pelage. Short-day hamsters also displayed elevated latencies of nociceptive responses in the hot-plate test, suggesting reduced pain responsivity. Prior to assessing potential neuronal or neuroendocrine mediators of altered pain responses, however, we investigated the possibility that changes in fur characteristics mediated photoperiod differences in pain responsivity. Removal of fur with a depilatory cream eliminated photoperiod differences in pain responsivity. Taken together, these data indicate that day length regulates thermal pain responses via changes in fur properties; also, changes in pelage properties have both thermoregulatory and thermal insulatory properties.


Author(s):  
Nour Nissan ◽  
Elroy R. Cober ◽  
Michael Sadowski ◽  
Martin Charette ◽  
Ashkan Golshani ◽  
...  

Abstract Key message A previously identified soybean maturity locus, E6, is discovered to be J, with the long juvenile allele in Paranagoiana now deemed j−x. Abstract Soybean grown at latitudes of ~20° or lower can produce lower grain yields due to the short days. This limitation can be overcome by using the long juvenile trait (LJ) which delays flowering under short day conditions. Two LJ loci have been mapped to the same location on Gm04, J and E6. The objective of this research was to investigate the e6 allele in ‘Paranagoiana’ and determine if E6 and J are the same locus or linked loci. KASP markers showed that e6 lines did not have the j−1 allele of LJ PI 159925. A population fixed for E1 but segregating for E6, with e6 introgressed from Paranagoiana, showed single gene control for flowering and maturity under short days. Sequencing Glyma.04G050200, the J gene, with long amplification Taq found that the e6 line ‘Paranagoiana’ contains a Ty1-copia retrotransposon of ~10,000 bp, inserted within exon 4. PCR amplification of the cDNA of Glyma.04G050200 also showed differences between the mRNA sequences (presence of insertion in j−x). Hence, we conclude that the loci E6 and J are one locus and deem this new variation found in Paranagoiana as j−x.


Sign in / Sign up

Export Citation Format

Share Document