Testing the impact of community composition on the productivity of a cool temperate eucalypt forest: the Australian Forest Evenness Experiment (AFEX)

2020 ◽  
Vol 68 (4) ◽  
pp. 310
Author(s):  
Melissa R. Gerwin ◽  
Rose Brinkhoff ◽  
Travis Britton ◽  
Meagan Porter ◽  
Ruth K. Mallett ◽  
...  

Understanding the factors controlling productivity is crucial for modelling current and predicting future forest growth and carbon sequestration potential. Although abiotic conditions exert a strong influence on productivity, it is becoming increasingly evident that plant community composition can dramatically influence ecosystem processes. However, much of our understanding of these processes in forests comes from correlative studies or field experiments in short-statured, short-lived vegetation. Here, we present the background, design and implementation success of the Australian Forest Evenness Experiment (AFEX), which was designed to investigate the influence of community composition on the processes that contribute to forest productivity. Eighty 25 × 25-m plots, covering 5 ha in a logged, burnt forest coupe in south-eastern Tasmania were sown with four tree species, namely Eucalyptus delegatensis R.T.Baker, E. regnans F.Muell., Acacia dealbata Link and Pomaderris apetala Labill., in varying combinations to provide a range of evenness levels with each of the four species as target dominant. Despite some differences between sown composition and realised composition 1year after sowing, a substantial range of community evenness and local neighbourhood densities and compositions existed in the experiment. Thus, this site provides a unique opportunity to determine the influence of local neighbourhood composition on a range of ecological processes.


2019 ◽  
Vol 15 (7) ◽  
pp. 20190280 ◽  
Author(s):  
Gabrielle Martin ◽  
Vincent Devictor ◽  
Eric Motard ◽  
Nathalie Machon ◽  
Emmanuelle Porcher

Latitudinal and altitudinal range shifts in response to climate change have been reported for numerous animal species, especially those with high dispersal capacities. In plants, the impact of climate change on species distribution or community composition has been documented mainly over long periods (decades) and in specific habitats, often forests. Here, we broaden the results of such long-term, focused studies by examining climate-driven changes in plant community composition over a large area (France) encompassing multiple habitat types and over a short period (2009–2017). To this end, we measured mean community thermal preference, calculated as the community-weighted mean of the Ellenberg temperature indicator value, using data from a standardized participatory monitoring scheme. We report a rapid increase in the mean thermal preference of plant communities at national and regional scales, which we relate to climate change. This reshuffling of plant community composition corresponds to a relative increase in the abundance of warm- versus cold-adapted species. However, support for this trend was weaker when considering only the common species, including common annuals. Our results thus suggest for the first time that the response of plant communities to climate change involves subtle changes affecting all species rare and common, which can nonetheless be detected over short time periods. Whether such changes are sufficient to cope with the current climate warming remains to be ascertained.



Author(s):  
Mirko U. Granata ◽  
Rosangela Catoni ◽  
Francesco Bracco

Abstract As a part of a larger study concerning the carbon sequestration capability by hazelnut orchards in Italy, we analyzed the total amount of carbon dioxide (CO2) removed over the year from the atmosphere through the net assimilation rates in two hazelnut orchards in Piedmont (i.e., the second region in Italy for surface and production). In particular, considering the key role played by the structural traits in affecting carbon sequestration potential, we assessed the impact of two different training systems widely diffused in the region: single trunk in orchardA and bush-like in orchardB. The results showed that plants in orchardA and orchardB sequestered 10.6 ± 1.8 and 25.7 ± 4.2 kg (CO2) plant−1 month−1, respectively. Higher CO2 sequestration in the plants in orchardB was due to their higher leaf area index relative to plants in orchardA. The mean CO2 sequestration from orchardA and orchardB per area was 4.25 ± 1.72 and 8.57 ± 3.41 Mg (CO2) ha−1 month−1, respectively. We also estimated the total amount of CO2 emission by the management over the entire production season in 157.335 kg CO2eq ha−1 by summing the contribution of diesel fuel, machinery and fertilization practices and considering that the total amount of CO2 sequestered by the two hazelnut orchards over the entire study period was estimated in 26 Mg (CO2) ha−1 in orchardA, and in 51 Mg (CO2) ha−1 in orchardB, they had an effective positive role as carbon sink at this local level.



Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 605-614 ◽  
Author(s):  
Matthew J. Rinella ◽  
Roger L. Sheley

The impact of invasive weed management on plant community composition is highly dependent on location-specific factors. Therefore, treatment means from experiments conducted at a given set of locations will not reliably predict community response to weed management elsewhere. We developed a model that rescales treatment means to better match local conditions. The goal of this paper was to determine if this rescaling improves predictions. We used our model to predict leafy spurge stem length density and grass biomass data from field experiments. The experiments consisted of herbicide-treated plots, untreated controls, and, in some cases, grass seeding treatments. When herbicides suppressed leafy spurge, the model explained 21 to 48% more variation in grass response than did mean grass response to the same or similar herbicide treatments applied at other sites. When herbicides killed grass, the model explained 53% more variation in leafy spurge response than did mean leafy spurge response to the same herbicide treatment applied at other sites. We regressed model predictions against observed data and tested the null hypothesis that resulting slope terms were equal to 1.0. Because the null hypothesis was rejected in two of four tests, the model may systematically over- or underpredict in some situations. However, measurement error in the observed data, unintended herbicide injury, or an inaccurate allometric relationship may account for a major proportion of the systematic deviations, and these factors would not cause prediction error in some management applications. Because the model tends to be better than the means from experiments at predicting plant community composition, we conclude that the model could advance managers' ability to predict plant community responses to invasive weed management.



Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 51
Author(s):  
Leonel Nunes ◽  
Mauro Raposo ◽  
Catarina Meireles ◽  
Carlos Gomes ◽  
Nuno Ribeiro

Biological invasions are of complex solution, consuming resources for their control and eradication. However, in many of the documented processes that are available, this is an attempt with no solution in sight. The possibility of increasing the pressure over these species while creating value chains has been presented as a method for ensuring the sustainability of their control and eradication processes. In the case of invasive forest species in Portugal, such as Acacia dealbata Link, this control is becoming increasingly important. In addition to the negative impacts on biodiversity, the proliferation of this species has economic implications due to its competition with forest production species such as Pinus pinaster Aiton and Eucalyptus globulus Labill. Another critical aspect to be considered is the increase of the risk of rural fires, which is enhanced by the accumulation of low-value biomass around production forests. In this work, the possibility of using this species as a vehicle for the capture and sequestration of carbon in the medium and long-term was evaluated from a perspective of providing ecosystem services as a measure to mitigate climate change. However, due to its highly heliophilous character, it was found that the growth capacity of this species is rapidly conditioned by the position of each tree within a stand, not being able to maintain that capacity in the medium and long term.



2021 ◽  
Vol 9 ◽  
Author(s):  
Mia Svensk ◽  
Marco Pittarello ◽  
Ginevra Nota ◽  
Manuel K. Schneider ◽  
Eric Allan ◽  
...  

Green alder (Alnus viridis) is a shrub species that has expanded over former pastures in Central Europe due to land abandonment, leading to negative agri-environmental impacts, such as a reduction in forage yield and quality and an increase in nitrate leaching. Robust livestock breeds such as Highland cattle could be used to control A. viridis encroachment. The objectives of this study were to investigate the impact of A. viridis encroachment on plant community composition and diversity and to map the spatial distribution of Highland cattle in A. viridis-encroached pastures. During the summer of 2019, three different Highland cattle herds were placed along an A. viridis encroachment gradient. A total of 58 botanical surveys were carried out before grazing to assess plant community composition, pastoral value, and ecological indicator values. The spatial distribution of cattle was studied during the whole grazing period by monitoring six to eight cows equipped with GPS collars in each herd. Plant species associated with higher pastoral values of the vegetation were found in areas with lower A. viridis cover, while highly encroached areas were dominated by a few nitrophilus and shade-tolerant broad-leaved species and by ferns. Cattle spent more time in areas with higher pastoral value but did not avoid areas with high cover of A. viridis, on steep slopes or far from water. These results show that Highland cattle are able to tolerate harsh environmental conditions and that they can exploit A. viridis-encroached pastures. This suggests that they have a high potential to reduce A. viridis encroachment in the long-term.



2017 ◽  
Author(s):  
Amrei Voelkner ◽  
Charlotte Diercks ◽  
Rainer Horn

Abstract. Anaerobically fermented digestates as well as aerobically composted organic substances (OS) are used as valuable organic fertilizers in agriculture. Besides their benefits for plant nutrition and carbon sequestration potential, these amendments are also suspected to interfere negatively with the soil matrix. To compare the relevance of digestates and compost for priming effects and water repellency of soils, a moderate (40 m3 ha−1) and a threefold (120 m3 ha−1) amount of digestate derived from mechanically pre-treated silage from 80 % maize and 20 % sugar beet or 10 t and 30 t of compost, respectively, was mixed with homogenized samples of a loamy Cambic Luvisol (Ut3) and a sandy Podzol (Ss) in a laboratory experiment. The basal respiration rate (BAS) and the repellency index (RI) of moist (pre-dried to −60 hPa) soil-digestate-mixtures (SDM) or soil-compost-mixtures (SCM) were analyzed to determine the effect of digestate and compost on microbial activity and hydrophobicity of soils. Additionally, the content of organic carbon (Corg) was investigated using air-dried and finely milled mixtures. The Ss showed quantitative reduction of Corg in the SDM and SCM and an increased BAS, which could be explained by a beginning priming effect through microbial stimulation. As a result of enhanced OS protection in the Ut3, constant amounts of Corg and a subsequent declined BAS could be detected. The wettability was reduced in both soils; directly in the Ut3 by the supply of amphiphilic components and indirectly in the Ss by increased incorporation of microbial exsudates and mucilages. The supply of higher contents of available organic compounds with digestate and higher amounts of hydrophobic humic acids applied with the compost could be assumed to be the controlling factors decisive for the impact of this amendment on soil wettability. But also the inherent textural composition of the soil controlled the microbial activity and subsequent decomposition and release processes at high degree, since the Ut3 exhibited higher incorporation of OS in finer pores and contributed to the protection against microbial decay.



2016 ◽  
Vol 8 (3) ◽  
pp. 1479-1484
Author(s):  
Nancy Loria ◽  
S. K. Bhardwaj ◽  
Charles K. Ndungu

The impact of cropping systems on soil properties, nutrient availability and their carbon sequestration potential was studied during the years 2014 and 2015 in Shiwalik hills of Himachal Pradesh. The four commonly occurring cropping systems namely vegetable, fruit, cereal crop and agroforestry were selected. Uncultivated land in the region was considered as control. In total, there were five treatments which were replicated six times under randomized block design. The study indicated that the cropping systems in the Shiwalik hills varied significantly (P=0.05) with respect to their impact on soil properties, nutrient availability and carbon sequestration potential. The pH and EC was in the range of 6.04 to 6.90 and 0.094 to 0.138 dSm-1, respectively and were normal in range. Organic carbon and bulk density in surface soils ranged from 8.06 to 9.70 g kg-1 and 1.19 to 1.34 Mg m-3, respectively. The available NPK was highest (267.21, 19.99, 172.42 kg ha-1) under vegetable based cropping system as compared to other systems. Carbon density in surface soil ranged from 11.33 to 15.39 Mg C ha-1 and total carbon sequestered upto 30cm soil depth ranged from 601.96 to 12646.29 Gg. The study indicated that in Shiwalik hills of Himachal Pradesh, the commonly occurring cropping systems did not influence the soil properties and nutrient availability adversely. Agroforestry based cropping system is having highest potential of sequestering soil carbon in Shiwalik hills. Therefore to adapt to changing climatic situation and to mitigate its effect in the region, agroforestry based cropping system need to be encouraged.



Sign in / Sign up

Export Citation Format

Share Document