The nature of reaction wood. VIII. The structure and differentiation of compression wood

1964 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
AB Wardrop ◽  
GW Davies

The cell wall organization of tracheids of natural and chemically induced compression wood of Pinus radiata and Actinostrobus pyramidalis has been shown to be the same, and is similar to that established in previous studies of natural compression wood. In the secondary wall only two layers were present. In the second of these there was a well-developed system of helical cavities, separating ribs of cellulose. The ribs of cellulose were parallel to the direction of microfibril orientation; were complex in form; and the cellulose lamellae lay parallel with the wall surface. A well-developed wart structure was present. During the differentiation of compression wood tracheids, the intercellular spaces were formed during the phase of surface enlargement of the differentiating tracheids. At an early stage the intercellular spaces appeared to contain cytoplasmic ground substance. During the development of the layer S1 the cytoplasmic organization was similar to that of normal tracheids, the cells containing a large vacuole with a well-developed tonoplast and plasmalemma. During the development of the layer S2 the cytoplasm contained numerous small vesicles with no large vacuoles, and in many instances the plasmalemma was absent. At the conclusion of the differentiation of the cell the plasmalemma was again present and penetrated the helical cavities of the wall. Compression wood induced by 3-indoleacetic acid (IAA) alone, gibberellic acid (GA) alone, or IAA and GA in combination was identical with that formed under natural conditions. The localized lateral application of IAA to vertical stems caused conspicuous bending of the stem as well as compression wood formation.

Holzforschung ◽  
2016 ◽  
Vol 70 (9) ◽  
pp. 801-810 ◽  
Author(s):  
Noritsugu Terashima ◽  
Chisato Ko ◽  
Yasuyuki Matsushita ◽  
Ulla Westermark

Abstract A large amount of monolignol glucosides (MLGs: p-glucocoumaryl alcohol, coniferin, syringin) are found in lignifying soft xylem near cambium and they disappear with the progress of lignification. Recently, it became a matter of debate whether those MLGs are real intermediates in lignin biosynthesis or only a storage form of monolignols outside of the main biosynthetic pathway. The latter is partly based on a misinterpretation of 14C-tracer experiments and partly on the simple generalization of the results of gene manipulation experiments concerning the flexible and complex lignification. In the present paper, it could be confirmed by the most reliable 13C-tracer method that MLGs are real intermediates in the pathway from l-phenylalanine to macromolecular lignin-polysaccharides complexes in the cell walls. This pathway via MLGs is essential for transport and programmed delivery of specific monolignols in a stable form from intracellular space to specific lignifying sites within the cell wall. The pool size of MLGs is large in most gymnosperm trees and some angiosperm species that emerged in an early stage of phylogeny, while the pool size is small in most angiosperms. This difference in pool size is reasonably understandable from the viewpoint of plant evolution, in the course of which the role of MLGs changed to meet variation in type of major cells, reaction wood formation, and postmortem lignification.


IAWA Journal ◽  
2006 ◽  
Vol 27 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Linda C.Y. Hsu ◽  
John C.F. Walker ◽  
Brian G. Butterfield ◽  
Sandra L. Jackson

We investigated the potential for the roots of Pinus radiata D. Don to form compression wood. Compression wood was not observed in either the tap or any lateral roots further than 300 mm from the base of the stem. This suggests that either the roots do not experience the stresses required to induce compression wood formation, or that they lack the ability to form it. Roots artificially subjected to mechanical stress also failed to develop compression wood. It is therefore unlikely that an absence of a compressive load on buried roots can account for the lack of compression wood. Application of auxin to the cambia of lateral roots was similarly ineffective at inducing the formation of compression wood. These observations suggest that the buried roots of radiata pine lack the ability to develop compression wood. We also report the formation of an atypical S3 wall layer in the mechanically-stressed and auxin-treated tracheids and suggest that a reaction wood that is different to compression wood may well form in roots.


1950 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

Optical and X-ray methQds have been used in the examinatiQn Qf the secQndarycell wall Qf cQmpressiQn WQQd tracheids from a number Qf species QfgymnDsperms.By these methQds it has been shQwn that the cell wall Qf CQmpressiQn WQQd tracheidscDnsists Qf two. layers. In the Quter layer the micelles are inclined at a large angle 'to. the lQngitudinal axis Qf the tracheid, while in the inner layer the micelles areinclined at a relatively smaller angle. In the inner Df the two. layers there exist radialdiscQntinuities in the spiral micellar structure, which are visible as IQngitudinal striatiQnsin the cell wall. These discQntinuities also. aCCQunt for the radial distributiQn Qflignin which is observed in transverse sectiQns Qf cQmpressiQn WQQd tracheids. Bydetermining the average tracheid length Qf the last-fDrmed late WQod in the variQusgrowth rings Df several eccentric stems Qf Pinus radiata D.DQn it has been shDwn thatthe tracheids Qf cQmpressiQn WQQd are appreciably shQrter than WQuld be the case ifno. cQmpressiQn WQQd were present. A study Qf the change in micellar QrientatiQn withchange in tracheid length has indicated that the angle Qf micellar QrientatiQn in CQmpressiQnWQQd tracheids dQes nQt differ signific(mtly frQm that existing in nQrmalWQQd tracheids Qf similar length. In so. far as the prQperties Qf WQQd are determinedby cell wall QrganizatiQn, it is cQncluded that cQmparisQns between cQmpressiQn WQDdand normal WQQd shQuld be made Qn material Qf the same tracheid length and spiralQrganizatiDn. It is suggested that bQth the reductiQn in tracheid length and eccentricradial growth in stems cQntaining cQmpressiQn WQQd are to. be attributed to. an increasein the number Df bDth transverse and tangential lQngitudinal divisiQns Qf thefusifQrm initials Qf the cambium.


IAWA Journal ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 385-394
Author(s):  
Xinguo Li ◽  
Robert Evans ◽  
Washington Gapare ◽  
Xiaohui Yang ◽  
Harry X. Wu

The formation of reaction wood is an adaptive feature of trees in response to various mechanical forces. In gymnosperms, reaction wood consists of compression wood (CW) and opposite wood (OW) that are formed on the underside and upperside of bent trunks and branches. Although reaction wood formed in bent trunks has been extensively investigated, relatively little has been reported from conifer branches. In this study SilviScan® technology was used to characterize radiata pine branches at high resolution. Compared to OW formed in the branches, CW showed greater growth, darker colour, thicker tracheid walls, higher coarseness, larger microfibril angle (MFA), higher wood density, lower extensional stiffness and smaller internal specific surface area. However, tracheids of CW were similar to those of OW in their radial and tangential diameters. These results indicated that gravity influenced tracheid cell division and secondary wall formation but had limited impact on primary wall expansion. Furthermore, seasonal patterns of CW formation were not observed in the branches from cambial age 4 while earlywood and latewood were clearly separated in all rings of OW. The marked change of MFA during reaction wood formation suggested that branches could be ideal materials for further study of cellulose microfibril orientation.


Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


1955 ◽  
Vol 3 (2) ◽  
pp. 177 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.


Author(s):  
Vladimír Gryc ◽  
Petr Horáček

The paper was aimed at the determination of variability of horizontal resin canal dimension in spruce wood in relation to the position in a spruce stem. Significant changes of dimensions in horizontal resin canal along the stem length and radius were found. On the basis obtained of results 3D models (for CW, OW, SWL and SWP zones) describing changes in resin canal dimensions in spruce in relation to the position in a stem were created. In the models, the resin canal dimension decreases with the height of a stem and on the other hand, with an increasing distance from the stem pith the dimension of resin canal increases. The importance of the paper consists in the enlargement of findings about the structure of spruce with compression wood.


2015 ◽  
Vol 40 (2) ◽  
pp. 315-340 ◽  
Author(s):  
B. A. Molski

The corewood of pine ds very prone to compression wood formation, this changing the whole pattern of the tree ring structure and the siz.es of early and late wood. Compression wood always increases the formation of late wood at the expense of early wood. Tree rings with compression wood are generally wider than those without it, but there occur also tree rings wihout compression wood wider than those in which it is present, formed in the same year and in the same tree.


IAWA Journal ◽  
1988 ◽  
Vol 9 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Frank W. Telewski

The majority of detailed studies on circumnutational growth movements have focused on herbaceous plants or on the primary growth of woody plant seedlings, ignoring completely secondary growth in woody plants. The relatively rapid movement in herbaceous tissues consists of two components: an autonomous growth rhythm and a gravitropic response. Since there is a gravitropic component to circumnutational movement and a gravitropic stimulus can induce compression wood formation, the formation of a compression wood spiral may be expected if there is a circumnutational movement of a woody stern. It is suggested here, that observed spirals of compression wood within annual growth rings in Pinus taeda L. and Abies concolor (Gord. ' Glend.) Lindl. ex Hildebr. represents an annual record of a slower circumnutational growth movement. Data derived from observations of greenhouse- grown 3-year-old Pinus taeda seedlings indicate that there are two distinct circumnutational patterns of different rotation al frequency present in woody plants associated with primary and secondary tissues.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Tatsuya Shirai ◽  
Hiroyuki Yamamoto ◽  
Miyuki Matsuo ◽  
Mikuri Inatsugu ◽  
Masato Yoshida ◽  
...  

Abstract Ginkgo (Ginkgo biloba L.) forms thick, lignified secondary xylem in the cylindrical stem as in Pinales (commonly called conifers), although it has more phylogenetic affinity to Cycadales than to conifers. Ginkgo forms compression wood-like (CW-like) reaction wood (RW) in its inclined stem as it is the case in conifers. However, the distribution of growth stress is not yet investigated in the RW of ginkgo, and thus this tissue resulting from negative gravitropism is still waiting for closer consideration. The present study intended to fill this gap. It has been demonstrated that, indeed, ginkgo forms RW tissue on the lower side of the inclined stem, where the compressive growth stress (CGS) was generated. In the RW, the micorofibril angle in the S2 layer, the air-dried density, and the lignin content increased, whereas the cellulose content decreased. These data are quite similar to those of conifer CWs. The multiple linear regression analysis revealed that the CGS is significantly correlated by the changes in the aforementioned parameters. It can be safely concluded that the negative gravitropism of ginkgo is very similar to that of conifers.


Sign in / Sign up

Export Citation Format

Share Document