Genetic Diversity and Population Genetic Structure in the Rare Chittering Grass Wattle, Acacia anomala Court

1988 ◽  
Vol 36 (3) ◽  
pp. 273 ◽  
Author(s):  
DJ Coates

There are 10 known populations of Acacia anomala occurring in two small disjunct groups some 30 km apart. The Chittering populations reproduce sexually whereas the Kalamunda populations appear to reproduce almost exclusively by vegetative multiplication. The level and distribution of genetic variation were studied at 15 allozyme loci. Two loci were monomorphic in all populations. In the Chittering populations the mean number of alleles per locus was 2.0 and the expected panmictic heterozygosity (genetic diversity) 0.209. In the Kalamunda populations the mean number of alleles per locus was 1.15 and the expected panmictic heterozygosity 0.079, although the observed heterozygosity of 0.150 was only marginally less than the Chittering populations (0.177). These data support the contention that the Chittering populations are primarily outcrossing whereas the Kalamunda populations are clonal, with each population consisting of individuals with identical and, in three of the four populations, heterozygous, multilocus genotypes. The level of genetic diversity within the Chittering populations is high for plants in general even though most populations are relatively smsll and isolated. It is proposed that either the length of time these populations have been reduced in size and isolated is insufficient for genetic diversity to be reduced or the genetic system of this species is adapted to small population conditions. Strategies for the adequate conservation of the genetic resources of Acacia anomala are discussed.

2004 ◽  
Vol 82 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Steven R Griffin ◽  
Spencer CH Barrett

Trillium erectum L. is an insect-pollinated understory herb widespread in forests of eastern North America. Marker gene studies indicate that the species has a mixed mating system, but aspects of population genetic structure have not been investigated. Using 10 allozyme loci, we measured genetic variation within and among 23 populations sampled from throughout the species' range. Overall, T. erectum displayed moderate levels of genetic diversity in comparison with other herbaceous plants. The percentage of loci that were polymorphic was 52%, with average values (±SE) of 1.20 ± 0.02, 0.08 ± 0.01, and 0.13 ± 0.01 for the number of alleles per locus (A), observed heterozygosity (Ho), and expected heterozygosity (He), respectively. There was evidence of inbreeding within populations (Fis = 0.39, 95% CI 0.26–0.55) and significant population differentiation (Fst = 0.16, 0.05–0.24). Analysis of genetic data provided no evidence of isolation by distance, and together with the occurrence of population subdivision, this suggests that there is relatively limited contemporary gene flow among populations. Northern populations of T. erectum tended to have less genetic variability than southern populations, probably as a result of historical factors associated with post glacial migration. Limited opportunities for gene dispersal as a result of low plant densities, the capacity for self-fertilization, and local seed dispersal by ants are likely to be the main factors maintaining contemporary patterns of genetic variation in T. erectum. Key words: allozymes, genetic diversity, gene flow, population genetic structure, Trillium.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Jing Tan ◽  
Zhi-Gang Zhao ◽  
Jun-Jie Guo ◽  
Chun-Sheng Wang ◽  
Jie Zeng

Erythrophleum fordii Oliv. is a valuable rosewood species indigenous to the tropical and warm sub-tropical zones of Vietnam, Laos, and South China. The natural forests have been heavily fragmented mostly due to over-exploitation and over-utilization, and alteration to croplands and fast-growing plantations. Therefore, it has been included in the IUCN Red List of Endangered Species as an endangered species. In the present study, genetic diversity and population genetic structure of 11 populations were estimated by SSR makers in South China. Five high polymorphic loci were studied with a total of 34 alleles, among which, seven were private alleles. The mean number of alleles per locus (A), the mean number of efficient alleles per locus (Ae), the observed (Ho) and expected (He) heterozygosity, and Shannon’s index (I) of the 11 populations were 3.40, 2.31, 0.52, 0.56, and 0.90, respectively. Correlation analysis between genetic parameters and geographical factors showed that He and I were in significant negative correlation with longitude, indicating that genetic diversity of E. fordii reduced gradually from West to East in south China. FIS of eight populations with above five samples was on average 0.01, most loci conformed to Hardy-Weinberg equilibrium in these populations; their genetic differentiation coefficient (FST) was 0.18, indicating that genetic differentiation among populations was relatively low and there existed 18% genetic variation among populations. Gene flow (Nm) between these populations was 1.28. The Mantel test showed that genetic distance was not significantly correlated with geographical distance (p > 0.05). It was concluded that populations with high genetic diversity or private alleles, especially Longmen, Wuming and Pingxiang populations should be a priority for in situ conservations, meanwhile more populations and as many families as possible in each population should be collected for ex situ conservations of germplasm resources of this species in the future.


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


Author(s):  
Assel Akhmetova ◽  
Jimena Guerrero ◽  
Paul McAdam ◽  
Liliana C.M. Salvador ◽  
Joseph Crispell ◽  
...  

AbstractBackgroundBovine tuberculosis (bTB) is a costly epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra- species host transmission for disease persistence. We sequenced an exceptional data set of 619Mycobacterium bovisisolates from badgers and cattle in a 100km2bTB ‘hotspot’ in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area.ResultsGraph transmission tree methods and structured coalescent analyses indicated the majority of bacterial diversity was found in the local cattle population. Results pointed to transmission from cattle to badger being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution ofM. bovisgenetic diversity, suggesting that badger-to-badger transmission may not be a key determinant of disease persistence.SignificanceOur data were consistent with badgers playing a smaller role in the maintenance ofM. bovisinfection in this study site, compared to cattle. Comparison to other areas suggests thatM. bovistransmission dynamics are likely to be context dependent, and the role of wildlife difficult to generalise.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


Heredity ◽  
2020 ◽  
Vol 126 (1) ◽  
pp. 63-76
Author(s):  
Sarah M. Griffiths ◽  
Mark J. Butler ◽  
Donald C. Behringer ◽  
Thierry Pérez ◽  
Richard F. Preziosi

AbstractUnderstanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.


Sign in / Sign up

Export Citation Format

Share Document