RAFT Chemistry and Huisgen 1,3-Dipolar Cycloaddition: A Route to Block Copolymers of Vinyl Acetate and 6-O-Methacryloyl Mannose?

2007 ◽  
Vol 60 (6) ◽  
pp. 405 ◽  
Author(s):  
S. R. Simon Ting ◽  
Anthony M. Granville ◽  
Damien Quémener ◽  
Thomas P. Davis ◽  
Martina H. Stenzel ◽  
...  

The present communication explores a novel avenue to glycopolymer-block-poly(vinyl acetate) polymers by a combination of reversible addition fragmentation chain transfer (RAFT) chemistry and Huisgen 1,3-dipolar cycloaddition (i.e., so-called ‘click’ chemistry) under mild reaction conditions. Such block copolymers are—because of the strongly disparate reactivity of the two monomers—otherwise not obtainable. Poly(vinyl acetate) that has an azide end group (Mn 6800 g mol–1, PDI 1.15) was treated with poly(6-O-methacryloyl mannose) (Mn 7600 g mol–1, PDI 1.11) in the presence of 1,8-diaza[5,4,0]bicycloundec-7-ene and copper(i) iodide. The resulting poly(vinyl acetate)-block-poly(6-O-methacryloyl mannose) had a number-average molecular weight of 15400 g mol–1 and a PDI of 1.48, which indicates that while the cycloaddition had occurred the resulting polymer distribution featured a considerable width. The resulting slightly amphiphilic block copolymer was subsequently investigated with regard to its self-assembly in aqueous solution. Dynamic light scattering studies indicated a hydrodynamic diameter of close to 200 nm. Transmission electron microscopy studies indicate the formation of rods as well as spheres with transitions between these two phases. However, the segregation between core and shell in the spheres is not pronounced; such behaviour is expected for weakly amphiphilic block copolymers.

2011 ◽  
Vol 284-286 ◽  
pp. 769-772
Author(s):  
Qian Qian You ◽  
Pu Yu Zhang

The block copolymer of PSt-b-POEOMA with the end of -COOH functional group has been synthesized by reversible addition fragmentation chain-transfer (RAFT) using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as a chain transfer agent. The architectures of the copolymers were confirmed by FT-IR and 1HNMR spectra. GPC analysis was used to estimate the molecular weight and the molecular weight distribution of the copolymers. Meanwhile, The nanostructures of the block copolymers PSt-b-POEOMA micelles formed in aqueous solution were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS).


2014 ◽  
Vol 67 (1) ◽  
pp. 78 ◽  
Author(s):  
Zhiyong Wang ◽  
Teddy Chang ◽  
Luke Hunter ◽  
Andrew M. Gregory ◽  
Marcel Tanudji ◽  
...  

Block copolymers based on iodinated monomers were prepared with the aim of creating nanoparticles as contrast agents suitable for X-ray imaging. Reversible addition–fragmentation chain-transfer polymerization was employed to synthesize block copolymers based on oligo(ethylene glycol) methylether methacrylate (OEGMEMA) and 2-[2′,3′,5′-triiodobenzoyl]oxyethyl methacrylate (METB). The polymerization of METB was found to be slow owing to the low solubility of the monomer, which does not allow high enough concentration to achieve a fast rate of polymerization. However, the block copolymerization was well controlled, resulting in several block copolymers, POEGMEMA-b-PMETB, which were further investigated in regards to their self-assembly in water. Micelles were prepared using POEGMEMA55-b-PMETB18, POEGMEMA55-b-PMETB32, POEGMEMA100-b-PMETB22, and POEGMEMA100-b-PMETB32. Transmission electron microscopy and dynamic light scattering revealed micelle sizes between 30 and 45 nm depending on the block size. The micelles were found to show a strong contrast similar to BaSO4 and Visipaque (iodixanol) during X-ray analysis. These micelles can now further be employed as drug carriers or can be conjugated to a bioactive group for targeting.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 601 ◽  
Author(s):  
Tatyana Elkin ◽  
Stacy Copp ◽  
Ryan Hamblin ◽  
Jennifer Martinez ◽  
Gabriel Montaño ◽  
...  

Polystyrene-b-polyethylene glycol (PS-b-PEG) amphiphilic block copolymers featuring a terminal tridentate N,N,N-ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn2+, Fe2+, Ni2+, and Zn2+, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.


2012 ◽  
Vol 65 (8) ◽  
pp. 1124 ◽  
Author(s):  
Nathalie Bailly ◽  
Gwenaelle Pound-Lana ◽  
Bert Klumperman

Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) (PVP-b-PVAc) block copolymers of varying molar mass and hydrophobic block lengths were synthesized by xanthate-mediated radical polymerization. In order to control the molar mass of the hydrophilic PVP block, a xanthate chain transfer agent, S-(2-cyano-2-propyl) O-ethyl xanthate, was used. The PVP-b-PVAc block copolymer is composed of a hydrophilic and hydrophobic segment, and has the ability to self-assemble in aqueous solution. The PVP-b-PVAc block copolymers were characterized by 1H NMR spectroscopy to confirm their self-assembly in water. The critical micelle concentration was determined by fluorescence spectroscopy. A combination of dynamic light scattering, transmission electron microscopy, and static light scattering was used to further characterize the self-assembly of the block copolymers in water.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Linping Zheng ◽  
Yun Chai ◽  
Yang Liu ◽  
Puyu Zhang

AbstractThe block copolymer of polystyrene-block-polyacrylate-blockpolystyrene (PSt-PAA-PSt) has been synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as chain transfer agent. Three copolymers form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The nanostructures of the PSt-PAA-PSt micelles formed in ionic liquid were observed by transmission electron microscopy (TEM). The self-assembled morphologies of the micelles are strongly dependent on the length of PAA block chains when the chain length of PS is fixed. The affinity of PAA chains for water and [BMIM][PF6] reverses with increasing temperature. Research results show that the copolymer with low polydispersity can be obtained by controlling polymerization, and the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid presents potential applications in many arenas.


2013 ◽  
Vol 66 (12) ◽  
pp. 1564 ◽  
Author(s):  
Lily A. Dayter ◽  
Kate A. Murphy ◽  
Devon A. Shipp

A single reversible addition–fragmentation chain transfer (RAFT) agent, malonate N,N-diphenyldithiocarbamate (MDP-DTC) is shown to successfully mediate the polymerization of several monomers with greatly differing reactivities in radical/RAFT polymerizations, including both vinyl acetate and styrene. The chain transfer constants (Ctr) for MDP-DTC for both these monomers were evaluated; these were found to be ~2.7 in styrene and ~26 in vinyl acetate, indicating moderate control over styrene polymerization and good control of vinyl acetate polymerization. In particular, the MDP-DTC RAFT agent allowed for the synthesis of block copolymers of these two monomers without the need for protonation/deprotonation switching, as has been previously developed with N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents, or other end-group transformations. The thermal properties of the block copolymers were studied using differential scanning calorimetry, and those with sufficiently high molecular weight and styrene composition appear to undergo phase separation. Thus, MDP-DTC may be useful for the production of other block copolymers consisting of monomers with highly dissimilar reactivities.


2016 ◽  
Vol 16 (4) ◽  
pp. 4239-4246
Author(s):  
Zhijiao Dong ◽  
Bingbing Yang ◽  
Zhifeng Fu ◽  
Yan Shi

Well defined two kinds of cationic amphiphilic block copolymers Poly(4-vinylbenzyltriethylammonium chloride)-b-Poly(styrene) are synthesized by combining reversible addition fragmentation chain transfer polymerizations and post-polymerization quaternization. Block copolymers are characterized by GPC and 1HNMR. The self-assembly behaviors of the block copolymers are studied, which are characterized by TEM. For Poly(4-vinylbenzyltriethylammonium chloride)13-b-Poly(styrene)136, crew-cut spherical micelles are obtained by using DMF as the initial common solvent, and the majority of the pearl series aggregates and a small amount of rod-like aggregates are all observed by using the mixture of DMF and THF as the initial common solvent. The formation process of rod-like aggregates is proposed in three steps: the micellization of copolymer chains, the formation of pearl series aggregates from the collision and fusion of individual initial spherical micelles, and the transformation from pearl series aggregates to rod-like aggregates. For Poly(4- vinylbenzyltriethylammonium chloride)18-b-Poly(styrene)370, large compound micelles and complicated spherical aggregates and small vesicles are all obtained. The formation process of small vesicles is also proposed in three steps: the formation of initial spherical micelles with some hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) embedded in the core, the removing of the outer layer common solvent, and solvent nucleation in the center. It should be noted that solvent nucleation is critical, because of the hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) and the common solvent and water embedded in the core of the initial spherical micelles.


2009 ◽  
Vol 62 (10) ◽  
pp. 1344 ◽  
Author(s):  
David Valade ◽  
Cyrille Boyer ◽  
Thomas P. Davis ◽  
Volga Bulmus

Block copolymers of allyl methacrylate and N-(2-hydroxypropyl)methacrylamide (HPMA) with different block lengths have been synthesized by reversible addition–fragmentation chain transfer polymerization. Allyl groups were modified with cysteamine, via a thiol-ene photoreaction, with a high efficiency (~100%) as evidenced by NMR spectroscopy, yielding cationic copolymers of HPMA. Polyelectrolyte complexes of small interfering RNAs (siRNA) and the cationic block copolymers were then formed at an N/P ratio between 1 and 4 depending on the block length of the copolymers. Increasing the length of the hydrophilic block was found to decrease the efficiency of siRNA complexation. The hydrodynamic diameter of the polyplexes in 130 mM buffer solution was less than 100 nm.


Sign in / Sign up

Export Citation Format

Share Document