scholarly journals A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls

2009 ◽  
Vol 62 (6) ◽  
pp. 533 ◽  
Author(s):  
Régis Fauré ◽  
Christophe M. Courtin ◽  
Jan A. Delcour ◽  
Claire Dumon ◽  
Craig B. Faulds ◽  
...  

The one-letter code system proposed here is a simple method to accurately describe structurally diverse oligosaccharides derived from heteroxylans. Substitutions or ‘molecular decoration(s)’ of main-chain d-xylosyl moieties are designated by unique letters. Hence, an oligosaccharide is described by a series of single letters, beginning with the non-reducing d-xylosyl unit. Superscripted numbers are used to indicate the linkage position(s) of main-chain substitution(s) and, where necessary, superscripted lowercase letter(s) indicate the nature of non-glycosidic groups (e.g., methyl, acetyl, or phenolic derivative moieties) that can be present on the substituents. Although relatively simple and practical to use, this abbreviated system lends itself to the naming of a large number of different combinations of structural building blocks and substituents. In its present state, this system is, therefore, adequate to name and differentiate all currently known complex oligosaccharides derived from heteroxylans and is sufficiently flexible to accommodate new structures as they become available.

2012 ◽  
Vol 9 (76) ◽  
pp. 2749-2766 ◽  
Author(s):  
Lorna J. Gibson

The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.


2018 ◽  
Vol 5 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Amir Sheikhi ◽  
Ashok Kakkar ◽  
Theo G. M. van de Ven

The first family of threshold (ppm level) cellulose-based scale inhibitors and crystal modifiers has been developed through the chemical nanoengineering of cellulose fibrils, the building blocks of plant cell walls, overcoming the structural and chemical limitations of conventional nanocelluloses.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


Sign in / Sign up

Export Citation Format

Share Document