Microwave-Assisted Ruthenium-Catalyzed Reactions

2009 ◽  
Vol 62 (3) ◽  
pp. 184 ◽  
Author(s):  
François Nicks ◽  
Yannick Borguet ◽  
Sébastien Delfosse ◽  
Dario Bicchielli ◽  
Lionel Delaude ◽  
...  

Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers has been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared with conventional heating methods. The present contribution aims at illustrating the advantages of this technology in homogeneous catalysis by ruthenium complexes and, when data are available, at comparing microwave-heated and conventionally heated experiments. Selected examples refer to olefin metathesis, isomerization reactions, 1,3-dipolar cycloadditions, atom transfer radical reactions, transfer hydrogenation reactions, and H/D exchange reactions.

Synthesis ◽  
2017 ◽  
Vol 49 (12) ◽  
pp. 2605-2620 ◽  
Author(s):  
Nicolas Glinsky-Olivier ◽  
Xavier Guinchard

Tetrahydro-β-carbolines are important synthetic intermediates in the total synthesis of natural products and of compounds exhibiting strong bioactivities. Over the last decades, catalytic methods using chiral catalysts have been described for their synthesis. This review covers catalytic and enantioselective methods to access chiral tetrahydro-β-carbolines and their applications in the elaboration of complex chiral molecules.1 Introduction2 Asymmetric Reduction of Dihydro-β-carbolines2.1 Asymmetric Transfer Hydrogenation Reactions2.2 Asymmetric Hydrogenation Reactions2.3 Biocatalyzed Reduction of Dihydro-β-carbolines3 Organocatalyzed Pictet–Spengler Reactions3.1 Chiral Thiourea-Catalyzed Reactions3.2 Chiral Phosphoric Acid Catalyzed Reactions4 Pictet–Spengler Reactions of In Situ Generated Cyclic Iminiums5 Organocatalyzed Functionalization of Dihydro-β-carboliniums6 Organocatalyzed Alkylation of Tetrahydro-β-carbolines7 Biocatalyzed Dynamic Kinetic Resolution of Tetrahydro-β-carbolines8 Conclusion and Perspectives


2006 ◽  
Vol 10 (03) ◽  
pp. 176-185 ◽  
Author(s):  
Farzad Atefi ◽  
Oliver B. Locos ◽  
Mathias O. Senge ◽  
Dennis P. Arnold

The regiospecific halogen exchange reactions of various easily accessible meso-bromoporphyrins to obtain meso-iodoporphyrins, using η1-palladioporphyrins as intermediates, have been investigated. This one-pot methodology allows the isolation of meso-iodoporphyrins in excellent yields with short reaction times. Similarly meso-(2-bromoethenyl)porphyrins can be converted to their iodoethenyl analogues. These iodoporphyrins show great potential as starting materials for various palladium catalyzed reactions. The X-ray crystal structure of 5-iodo-10,20-diphenylporphyrin has been determined.


2019 ◽  
Vol 16 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Renu Bala ◽  
Vandana Devi ◽  
Pratibha Singh ◽  
Navjot Kaur ◽  
Pawandeep Kaur ◽  
...  

Background: Tetrahydroindazole, a member of the fused-pyrazole system, is a least studied class of heterocyclic compounds owing to its scarcity in nature. However, a large number of synthetically prepared tetrahydroindazoles are known to show a variety of biological activities such as interleukin- 2 inducible T-Cell kinase inhibitors, AMPA receptor positive allosteric modulators, antitumor, antituberculosis, anti-inflammatory and antimicrobial activities. Vilsmeier-Haack reaction is one of the most important chemical reactions used for formylation of electron rich arenes. Even though Vilsmeier- Haack reaction was studied on a wide variety of hydrazones derived from active methylene compounds, literature lacks the examples of the use of 4-substituted cyclohexanones as a substrate for the synthesis of 4,5,6,7-tetrahydroindazoles. The study of the reaction of Vilsmeier-Haack reagent with hydrazones derived from cyclic keto compounds having active methylene has been considered the interested topic of investigation. In the present study, ethyl cyclohexanone-4-carboxylate was treated with one equivalent of various hydrazines for two hours and the resulted hydrazones were further treated with an OPC-VH reagent (Vilsmeier-Haack reagent isolated from phthaloyl dichloride and N,Ndimethylformamide) afforded 4,5,6,7-tetrahydroindazoles in excellent yields. The synthesized compounds 4a-f and 5a-f were screened for their antioxidant activities using the DPPH radical scavenging assay. The target compounds were synthesized regioselectively using 4+1 approach in excellent yields. A number of experiments using both conventional heating as well as microwave irradiation methods were tried and on comparison, microwave irradiation method was found excellent in terms of easy work up, high chemical yields, shortened reaction times, clean and, no by-products formation. Some of the synthesized compounds showed significant antioxidant activity. The microwave assisted synthesis of 4,5,6,7-tetrahydroindazoles from ethyl cyclohexanone-4-carboxylate has been reported under mild conditions in excellent yield. Easy work up, high chemical yield, shortened reaction times, clean and no by-products formation are the major advantages of this protocol. These advantages may make this method useful for chemists who are interested in developing novel 4,5,6,7-tetrahydroindazole based drugs.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 246 ◽  
Author(s):  
Vincenzo Palma ◽  
Daniela Barba ◽  
Marta Cortese ◽  
Marco Martino ◽  
Simona Renda ◽  
...  

Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric process in which heat is generated within the material itself, and, consequently, it can be very rapid and selective. In this way, the microwave-susceptible material can absorb the energy embodied in the microwaves. Application of the microwave heating technique to a chemical process can lead to both a reduction in processing time as well as an increase in the production rate, which is obtained by enhancing the chemical reactions and results in energy saving. The synthesis and sintering of materials by means of microwave radiation has been used for more than 20 years, while, future challenges will be, among others, the development of processes that achieve lower greenhouse gas (e.g., CO2) emissions and discover novel energy-saving catalyzed reactions. A natural choice in such efforts would be the combination of catalysis and microwave radiation. The main aim of this review is to give an overview of microwave applications in the heterogeneous catalysis, including the preparation of catalysts, as well as explore some selected microwave assisted catalytic reactions. The review is divided into three principal topics: (i) introduction to microwave chemistry and microwave materials processing; (ii) description of the loss mechanisms and microwave-specific effects in heterogeneous catalysis; and (iii) applications of microwaves in some selected chemical processes, including the preparation of heterogeneous catalysts.


Synthesis ◽  
2020 ◽  
Vol 52 (17) ◽  
pp. 2483-2496
Author(s):  
Johannes F. Teichert ◽  
Lea T. Brechmann

The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen­-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.1 Introduction: H2-Mediated C–C Bond-Forming Reactions2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions 3 Homogeneous Copper-Catalyzed Transfer Hydrogenations4 Trapping of Reactive Intermediates of Alkyne Transfer Semi­hydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations 5 Copper(I)-Catalyzed Alkyne Semihydrogenations6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2 6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydro­allylation Reaction of Alkynes 6.3 Trapping with Aryl Iodides7 Conclusion


ChemInform ◽  
2010 ◽  
Vol 31 (33) ◽  
pp. no-no
Author(s):  
T. M. Jyothi ◽  
T. Raja ◽  
M. B. Talawar ◽  
K. Sreekumar ◽  
S. Sugunan ◽  
...  

Synlett ◽  
2018 ◽  
Vol 29 (08) ◽  
pp. 1047-1054 ◽  
Author(s):  
Fulvia Felluga ◽  
Fabio Benedetti ◽  
Federico Berti ◽  
Sara Drioli ◽  
Giorgia Regini

A practical and general method for the Biginelli cyclocondensation of guanidine with aldehydes and β-dicarbonyl compounds is described and illustrated with the synthesis of a set of 26 functionalized 2-amino-3,4-dihydropyrimidines. The simple protocol involves the ­microwave-mediated reaction of a twofold excess of guanidine hydrochloride with the required reaction partners in an alcohol at 120 °C. Yields are generally good, with short reaction times and a simple workup. The scope is considerably wider than that of similar reactions ­carried out under conventional heating.


RSC Advances ◽  
2017 ◽  
Vol 7 (64) ◽  
pp. 40218-40226 ◽  
Author(s):  
Mahesh K. Gangishetty ◽  
Adriana M. Fontes ◽  
Marcos Malta ◽  
Timothy L. Kelly ◽  
Robert W. J. Scott

Au@Pd nanotriangles are used to accelerate coupling and hydrogenation reactions by a plasmonic heating mechanism.


Sign in / Sign up

Export Citation Format

Share Document